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ABSTRACT. The need to estimate the volume of removals occursformany reasons, such as in trespass cases,
severance tax reports, and post-harvest assessments. A logarithmic model is presented for prediction of
baldcypress total stem cubic foot volume using stump diameter as the independent variable. Because the error
of prediction is as important as the volume estimate, I demonstrate construction and use of simple and joint
confidence intervals about the mean and individual predictions. For completeness, I address prediction and
error from inventory estimates of removals. South. J. Appl.  For. 22(2):69-73.

Many circumstances exist today where the volume, and
ultimately the value, of trees must be assessed from stump
measurements. These situations include: ( 1) assessing timber
sales based on stump diameters, (2) checking harvesting
practices following tree removals, (3) tracing the history of
cutover lands, (4) assessing damage resulting from adverse
environmental conditions, (5) determining volume loss re-
sulting from trespass cutting, and (6) calculating growth on
cut as part of a forest inventory (Bylin 1982, Wharton 1984).
In all these situations only a stump diameter is known.

In terms of wetland tree species, baldcypress (Taxodium
distichum [L.] Rich) ranks high in importance. Cypress has
made a strong comeback since the last virgin stands were cut
in the 1940s. Current growing stock is estimated at around 6
billion cubic feet in the southeastern United States (Beltz et
al. 1992) and its distribution ranges from East Texas to
southern Maryland. Its increasing volume, distribution, and
desirability as a species for management, point to the need for
the ability to assess removals. Currently no published equa-
tions exist for estimating cypress volume from stump diam-
eter. In this paper I present a simple linear model for estimat-
ing bole cubic foot volume above stump, and I provide details
and examples on the construction and use of simple and joint
confidence intervals about the mean and individual predic-
tions. Also, prediction and associated error in the context of
forest inventories on removals is discussed.

Data

Taper data were collected on 157 trees from 26 sites (25 sites
with 6 trees and 1 site with 7) located throughout the South Delta
region of Louisiana (Figure 1). The typical stump height for
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Figure 1. Locations in Louisiana of the 26 baldcypress iample
sites used in development of stem volume equation based on
stump diameter.

baldcypress trees is 3 ftdue to their nature of forming fluted basal
swells. Consequently, trees were felled leaving a3 ft stump, and
total bole length was measured to the nearest 0.1 ft. Diameters
outside bark were measured to the nearest 0.1 in. at the stump and
at 2 ft intervals for the first 14 ft of bole length and 4 ft intervals
thereafter. Calipers were used to take two diameter readings at
each measurement point, which were then geometrically aver-
aged. Two bark thickness measurements were taken at each
measurement point using a bark gauge so inside-bark diameter
could be calculated.

While a 3 ft stump will capture most of the swell and
fluting, some fluting might still exist on the bole above this
point. What is desired is solid-wood diameter. The length of
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the bole exhibiting flutes was cross-sectioned at the appropri- where ib and ob stand for inside bark and outside bark,
ate points, and diameter readings were taken on the largest respectively. It is immediately obvious that the slope of
possible circle or ellipse which could be inscribed (with an Equation (3) is slightly smaller than the slope of Equation (2);
expandable hoop) inside the flutes at each cross-section. This however, predicted Vob is greater than predicted V ib for D
same procedure was used to measure stump diameter. Table less than 135.3 in. (nearly 12 ft), well beyond the application
1 lists the distribution of sample trees by stump diameter range of the functions, so constrained equations were deemed
inside bark. unnecessary.

Sectional cubic foot volumes were calculated using
Smalian’s formula. The top section was treated as a cone.
Inside- and outside-bark total stem cubic foot volumes (above
stump) were obtained by summing the inside- and outside-
bark sectional volumes, respectively. The range of inside-
bark volume was 2.3 to 109.0 ft3, with the mean being 32.0
ft3. The range of outside-bark volume was 2.7 to 119.9 ft3,
with the mean being 35.3 ft3.

Application and Reliability

Transforming Estimates to Original Units
When the logarithmic transformation is used, it is usually

desired to express estimated values of V in arithmetic (i.e.,
untransformed) units. However, the conversion of the unbi-
ased logarithmic estimate of the mean to arithmetic units is
not direct. The antilogarithm of In Vyields the median of the
skewed arithmetic distribution rather than the mean. If
p = m and c?* = sample variance of the logarithmic equa-
tion, then

Model

After examining a scatter plot of the data the following
logarithmic model was hypothesized:

(4)
InV=p,+P21nD+& (1)

where V is bole volume above stump, D is stump diameter
inside bark, In represents natural logarithms, the pi’s  are
model parameters, and E is residual error. This model was
fitted to the data using ordinary least squares regression. An
examination of the residuals revealed no trends. A
nonlogarithmic model was also tried (fitted with weighted
least squares) but model (1) fit the data very nicely and is easy
to work with. The final fitted equations are

In=-3.2994+2.4495lnD;R*  =0.87,6*  =0.1184  ( 2 )

m=-3.0658+2.40191nD;R*  =0.87,6*  =0.1160  ( 3 )

Table 1. Distribution of baldcypress sample trees by inside bark
stump diameter.
Stump diameter (in.) No. of trees

6 4
7 9
8 8
9 8

10 10
II I
12 5
13 14
14 I
15 12
16 15
17 10
18 12
19 14
20 9
21 5
22 2
23 2
24 1
26 3

Total 157

where V is the estimated value in arithmetic units (Yandle
and Wiant 1981). Uncertainty limits (i.e., confidence inter-
vals) about the m can be converted to arithmetic units in
the same manner, using Equation (4); these limits will be
asymmetric about the regression line.

Uncertainty Limits
Knowing the prediction interval is as important as being

able to predict the volume given D. The construction of
simple and joint confidence intervals is straightforward. Two
quantities are needed to construct the bounds on the predic-
tions: (1) the standard errors of the predictions (se) and (2) a
t- or W-value, for simple orjoint  confidence intervals, respec-
tively. The interval boundary points are obtained from:

C$ * se( t or W) (5)

where

W  = JpF( 1 - a; p, 12 - p)

is the Working-Hotelling value for confidence bands, p is
number of parameters (2), and n is number of observations
(157). If the user is interested in assessing limits for a
single volume using Equations (2) or (3), then a confi-
dence interval about that volume is appropriate. If, how-
ever, as is more often the case, the user is interested in
assessing limits about multiple volumes on Equations (2)
or (3),  then joint confidence intervals (variously known as
a confidence band or confidence region or simultaneous
confidence limits) are appropriate (Draper and Smith 198 1,
Neter et al. 1985).

In the following definitions let f = m and X = In D.
There are three types of standard errors one can utilize: (1)
for the predicted mean value of In Vi, s(K);  (2) for a
predicted value of an individual (new) outcome drawn
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from the distribution of In Vi, s(fi(,,,,);  and (3) for the
predicted mean of m new observations on In Vi, s(~~,,,~).
They are calculated as:

(64

(6~)

where x is the mean of the logarithmic transformed values
of stump diameter of our sample of n = 157 trees ( x =
2.6179),  and CSS  is the corrected sum of squares of X (CSS
= C(Xi -x)2  = 20.061).

Examples

The following examples illustrate the use of Equations (2)
through (6). Consider a stump with a measured solid-wood
diameter inside bark of 16.0 in. Using Equation (2) we obtain

tib  = -3.2994+  2.4495(2.7726)  = 3.492

From Equations (6a),  (6b),  and (6c),  the standard errors
are [using m  = 5 in Equation (6c)]:

3.492+0.0299(1.975)  =3.433  5 fib < 3.551

3.492f0.3454tl.975)  = 2.810 < tib(,,,)  < 4.174

3.492+0.1568(1.975)=3.182<?ib(,,,I3.802

To convert the logarithmic values to arithmetic units, we
apply Equation (4). For the predicted mean tree volume
inside bark from a 16 in. stump diameter we obtain:

@ib = exp(3.492 + 0.1184 / 2) = 34.9 ft”

Applying Equation (4) to the uncertainty limit values we
obtain the following intervals:

32.9 2 ljib i 37.0

17.6 I fib (new) s 68.9

25.6 I eib (new) s 47.5

The large confidence interval bounding fib(,,,)reflects
the considerable uncertainty surrounding individual tree vol-
ume when tree height is unknown.

Suppose from a trespass case there are three stumps with
diameters of 12.8, 18.5, and 23.6 in. Using Equation (3),  we
first estimate the logarithm of outside bark volumes:

fob, = -3.0658 + 2.4019(2.5494)  = 3.058

fob, = -3.0658+  2.4019(2.9178)  = 3.942

fob, = -3.0658+  2.4019(3.1612)  = 4.527

(2.7726-  2.6179)2
20.06 1

= 0.0299

Inserting the appropriate values into Equation (6a),  the
mean value standard errors are:

(2.7726-  2.6179)2
20.06 1

= 0.1568

The 95% r-value is 1.975. From Equation (5) the overall
mean confidence interval, individual confidence interval,
and mean confidence interval of five trees, respectively, are:

(2.5494 - 2.6179)2
20.061

(2.9178-  2.6179)2
20.06 1

(3.1612 -2.6179)2 = o 0495
20.06 1 ) .

For 90% joint confidence intervals about these three
predictions, the W-value is

,/2F(0.90;2,  155 = J2(2.337)  = 2.162

Using Equation (5),  the joint confidence intervals are:
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3.058 f 0.0277(2.162) = 2.998 5 fob, I 3.118

3.942 f 0.03X(2.162) = 3.865 5 fob, < 4.019

4.527 f 0.0495(2.162) = 4.420 I fob, 14.634

As before, to convert the logarithmic values to arithmetic
units, we apply Equation (4). For the three example trees we
have:

cob, = exp(3.058 + 0.116 / 2) = 22.6 ft”

tab, = exp(3.942 + 0.116 / 2) = 54.6 ft3

cob, = exp(4.527 + 0.116 / 2) = 98.0 ft”

Applying Equation (4) to the uncertainty limit values we
obtain the following intervals:

21.2 I pob, 5 24.0

50.6 5 cob2 5 59.0

88.1 I qob, 5 109.1

Prediction and Error from Inventories
In cases where it is desired to estimate removals from a large

area where it is impractical to tally all the stumps, a sample-based
estimate must be employed. For example, the periodic invento-
ries conducted nationwide by the USDA Forest Service are used
to report timber removals to all counties and states. In general,
the error of forest inventory estimates has two main components.
First is the component due to the random selection of sample
plots based on the inventory design, be it systematic, stratified,
etc. The second component is associated with the error of the
regression function. These two components constitute what is
known as the sam pling error.

An approach proposed by Cunia (1965, 1987a) can be
used to combine the error from the sample plots with the error
from a regression function. This approach requires that the
estimators be of the linear form:

j=b,z , + b2z 2+  . . . +b,,z,, =b’z (7)

where b is the coefficient vector from a regression function
and z is a vector of statistics calculated from the data of the
sample points or plots. The variance of y is calculated as:

Syy = b & b  +  z ’S,,z (8)

where S, and Sbb are the covariance matrices ofz and b. The
first term of S,, is the variance component associated with the
error of the sample plots, and the second term is the variance
component associated with the regression function.

It is quite easy to imagine j represents m in Equation
(7) and to have ~1 be a statistic based on a vector of l’s and

z2 be a statistic based on ln D. For use in Equation (8),  the Sbb
matrices for Equations (2) and (3) are listed in the Appendix.
Cunia (1987a,b,c,d,e,f),  in a series of papers, describes in
detail the steps of the above approach for making inventory-
based predictions, and combining the two error components
and constructing confidence intervals, when the sampling
designs are: (1) simple random sampling, (2) stratified sam-
pling, (3) two-stage sampling, (4) double sampling, (5)
continuous forest inventory (CFI) without sampling with
partial replacement (SPR), and (6) CFI with SPR.

Discussion
Predicting stem volume directly from stump diameter is

useful in many situations. Volume equations were developed
using cubic foot volumes because cubic foot volumes are
more accurate estimates of solid-wood volume in a tree stem.
Board foot equivalents would depend upon the local mer-
chantability limits and log rules used, while actual lumber
recovery would depend on the mill technology employed in
the conversion process. For those interested, baldcypress
board foot equivalents, or board foot/cubic foot ratios for two
sets of merchantability limits for both the Doyle and Interna-
tional l/4 in. log rules can be found in Hotvedt et al. (1985).

Resource professionals should bear in mind that regres-
sion functions like Equations (2) and (3) provide point
estimates which have a variance. When evaluating a large
group of trees with the same stump diameter, constructing a
confidence interval on t$ will provide a range of values that
should contain the true mean of that group. When evaluating
one tree, constructing a confidence interval on I/;(,,,) will
provide a range of values that should contain the true volume
of the individual. When evaluating a few trees with the same
D value, constructing a confidence interval on &(new)  will
provide a range of values that should contain the true mean of
this small group. If, however, as is more often the case, one is
interested in evaluating a number of observations across a range
of D values, then joint confidence intervals are necessary.

The ability to estimate removals from forest inventories is
a critical function. Fortunately, formulas for many different
inventory designs are available to build proper error terms
and put bounds on the estimates.
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APPENDIX

The covariance matrix of the coefficient vector b for
Equation (2),  the volume inside bark estimator, is

0.04119 -0.01545
‘bb = -0.01545 0.00590 1

The covariance matrix of the coefficient vector b for
Equation (3),  the volume outside bark estimator, is

0.04037 -0.01514
‘bb = -0.01514 0.00578 I
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