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Abs tract: In th is  pape r w e  de ve lop a ne w  m ode l for h arve s t ope ration cos ts  th at can be  us e d to e valuate  s tands  for pote ntial
h arve s t. Th e  m ode l is  bas e d on fe lling, e xtraction, and acce s s  cos ts  and is  uniq ue  in its  cons ide ration of th e  inte raction
be tw e e n h arve s t are a s h ape s  and acce s s  roads . W e  illus trate  th e  m ode l and e valuate  th e  im pact of s tand s ize , volum e , and
road cos t w h e n de te rm ining h arve s t layouts . Since  th e  approach  lays  th e  foundation for ope rational and tactical inte gration,
future  re s e arch  w ill inte grate  th e  tw o le ve ls  for both  th e  s ingle  and m ulti-pe riod proble m .

Key  W ords : H arve s t s ch e duling proble m , ope rations  re s e arch  m ode ling.

INTRODUCTION

In his videly  accepted book, Cost Control in the
Logging lndusrty  (1942), D.M. Mathews introduced
and articulated the reasons for proper spacing of roads
and landings. In this paper we develop a new opera-
tional cost model based on determining the optimal
number of landings and their locations. The approach
is unique in its consideration of the interaction between
harvest area shapes and the landing, skidding, and
roading costs. The model specifies the optimal number
of landings and their locations given the total size of
the tract. The spacings between the landings and roads
are solved implicitly so that the optimal number of
landings and roads can be placed within the boundaries
of the tract. The model also offers the flexibility of
alternate road routing while maintaining a plan that
minimizes total costs.

Forest planning decisions tend to be hierarchical with
long-term strategic decisions setting the limits for
shorter-term tactical decisions, which in turn are imple-
mented with actual forest operations. Integrating rhe
decision-making across all levels will lead to improved
solutions, but it also increases the difficulty of the
prob lem wlviny process. One of the diffkuttiec of

effectively integrating decision-making at the opera-
tional and tactical levels is simply due to spatial issues.

Main road projects must be carefully planned due to
the increasing demand for multi-resource activities.
Spatial constraints prohibit the progressive cut approach,
therefore, access roads must be built in a very system-
atic manner to the stands selected for harvest. Also,
from a silvicultural  perspective, minimal reading impact
is desired. Thus, it is extremely important to integrate
the roading projects at the operational and the tactical
levels to minimize impact. We will show how this can
be accomplished in our approach.

There seem to be two areas of concentration in the lit-
erature regarding the number and the placement of
landings. One area considers the uniform density case
where the skidding regions have regular shapes. A
number of contributions (Peters 1978, Suddarth and
Herrick  1964,  Sessions and Guangda 1987) have been
made in this area since Mathews (1942). These
approaches have concentrated on finding the optimal
road and landing spacings for unbounded tracts.

The other arca  of concentration has been for irregular-
shaped. nonunifom-density  tractc.  Percry  rind  Burke
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(1972) and others (Greulich  1991, Donnelly 1978)
have located landings over entire, irregular-shaped
tracts. Models for evaluating the optimal amount of
roading for irregular-shaped tracts are difficult to
develop so the emphasis has been landing locations and
average skidding distances. We will consider the uni-
form density case, but for a bounded region or tract.

MOTIVATING EXAMPLE

The primary motivation of this paper is to develop an
operational cost model that can be used to evaluate the
harvesting costs of bounded tracts of timber with uni-
form densities and regular shaped skidding regions.
Other approaches to this problem have concentrated on
finding the most economical spacings of roads and
landings, given the volume of timber over unbounded
regions. Total costs are found using these spacings
which may or may not be the final spacings, given the
dimensions of the tract. Figure 1 illustrates the result of
such a model.

Our approach considers the size of the bounded tract
initially, and then determines the most economical
landings, roading. and skidding. We implicitly calculate
the spacings by determining the number and shapes of
the grids in the tract, where a grid is defined as a rec-
tangular area that is served by a single landing located
in one comer of the grid.

In Figure 2 there are 8 grids, 2 landings and 0.75 JA
of roads where A defines the area of the entire tract.
Since there are 4 rows and 2 columns of grids, the
shape of the grids is rectangular where one side is twice
as long as the adjacent side.

We will develop a model to optimally determine the
number of landings and their placement considering
landing, skidding, and road costs.

I

Road
Spacing

EXTRACTlON  COST MODEL

The following parameten will be used. Note that some
parameters could vary by species of trees on a particu-
lar tract. Also. some tracts will have more than one
product class; therefore, the different volumes per tree
should be accounted for in the model.

A =
d=
cp=

=
; =

=
s =
x =

total area of tract considered
volume per tree in a tract
density of trees per unit area
volume capacity of the skidder
total number of skidder loads

(Aafa‘$/c
variable skidding costs
fixed skidding cost per turn
road cost per unit distance
fixed cost per landing

Our cost model is based on the sum of felling (F) and
extraction (E) costs; that is, the total cost, C. is found
as follows:

C=F+E.

We assume that felling costs are a function of the area
(A) and the density of timber on the harvest area. but.
not its shape (P).  since felling costs are related to the
number and size of the trees harvested.

We assume that the extraction costs are a function of
the area, density, and shape of the harvest area since
extraction costs are based on the number of landings.
the distance from the trees to the landings, and the
technology used to extract the trees; that is,

E = g(A,  ad, P).

JA

Fiyure I : OptImaI  Spacing of Roads and Landings
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We define total extraction costs to equal the sum of the
landings costs, L, and the skidding costs, S, and the
road costs, R; i.e.,

E=L+S+R.

As we noted earlier, E is a function of A,ad , and f. In
particular, P is a function of the following two decision
variables: g (the number of grids) and n (the number of
landings), where a grid defines an area that is harvested
from one landing. Note that a tract is typically parti-
tioned into multiple grids where up to four grids can be
harvested from one landing.

Assumptions

In the following model we assume:
1. grids are rectangular;
2. skid distances are proportional to rectilinear

distances (or can be adjusted with some proportion-
ality constant, as suggested by Greulich (199 1)):

3. there will only be one means-of-egress to a stand;
4. all roads are orthogonal to the x and y axes:
5. the capacity of the skidder is fixed u priori.

Approximate Extraction Cost Model

After splitting the area into g grids, we then need to
choose our n landing locations. Thus, we construct a
model to determine both the optimal g and n for a.
given area. Note that since n is a function of g, we will
use n(g) to denote this.

Mathews (1942) explained in detail the economic dif-
ferences of placing a landing on the boundary of a tract
versus building a road and placing the landing on the
interior of a tract. So it is reasonable to say if g is less
than or equal to 2 then there would be one landing
located on the boundary of the tract that served each of
the two grids. Alternatively, as long as g > 2, it seems
reasonable to approximate n(g) as:

L = n(g) = g/4.
(1)

This indicates that the tract will be split into multiples
of 4 with one landing serving 4 grids.

If we divide the tract area, A, into equal-area grids, we
can determine the number of skidder loads per grid.
Since the grids are not always square, we must modify
the equation to allow for rectangular shaped grids.
Thus,

(2)

where u and b represent the number of grid rows and
columns. Although 0 and b could be interchanged to
represent the rows or the columns in this equation
without changing the resulting value of S. we will show
later that a 2 b must always hold.

Generally, the amount of roading required is that which
provides access to each of the landing locations. We
can construct a table that shows the amount of reading
required based on the size of the tract and the number
of grids. For every harvest pattern we can calculate a
constant value that can simply be multiplied by the
length of one side of the square area to get the total
amount of roading required. Table 1 shows the results
of a number of different harvest patterns.

We approximate the total cost of roading, R. with the
following equation:

R=&((a 2)b+l)+J;i- -
a 2

-p - 2))
(3)

where a and b represent the number of columns and
rows of grids. Note that (3) requires that a 2 b and
b > 2. As we wil! show later, the harvest pattern could
rotate, thus. a could represent the rows or the columns
and likewise for b. So, a does not necessarily represent
the columns or the rows but the greater of the two,
unless the columns and rows are equal. It follows then
that g = ab.

The cost of roading is approximated well by (3). In
fact. (3) appears to provide the exact amount of roading
costs as long as b is even and 2 2. Notice that in
Table 1 all of the possible b’s are even or one. This is
due to there not being a feasible solution where b is
both odd and greater than one when there are g 14 land-
ings. Note from the Roading column in Table I that for

Table 1. Grid, road, and landing combinations.

Pat tern  Gr ids  Cal. ROWS Landings Reading

1 2 1 2 1 0
2 4 2 2 1 0.500
3 8 2 4 2 0.750
4 I2 2 6 3 0.830
5 16 2 8 4 0.875
6 20 2 10 5 0.900
7 24 2 12 6 0.9 I6
8 I6 4 4 4 1.750
9 24 4 6 6 2.000

10 32 3 8 x 2.135
II 40 4 10 I 0 3 ~00_.-

4 4



each of the harvest patterns in the table we have
assumed that a tract has one means-ofcgress, but its
location is not fixed. In reality, tracts that are located
adjacent to existing roads may have multiple means-of-
egress. However, in a large forest there will be very
few tracts adjacent to existing roads. Of course, (3)
could be modified to approximate the amount of road-
ing with more than one means-of-egress, but for pur-
poses of consistency here, we make this generalization.

We have approximated L S. and R. and now we are
ready to write our total cost model. Detailed deriva-
tions of these three models can be seen in Clark et al.
(1997).  We can approximate E as follows:

E =  L+S+R (4)

We know the following about the components of total
extraction cost function, E. The landings cost, I_.. linear-
ly increases with respect to n. The total skid cost, S, is
convex in n. And although we cannot show that the
roading cost function, R, is convex in n (since R is not
convex in (I orb), R is increasing in a and 6, and is
approximately linear in both n and h. Therefore. we
will use convex analysis to determine the values of a*
and b* (which imply g*).  The continuous values of a*.
b*,  and g* are utilized to find optimal integer values
forg and n.

Minimizing the total extraction cost, E, is found by tak-
ing the first derivative of our total extraction cost func-
tion, (4),  with respect to a and b, setting them equal to
zero, and solving the two equations simultaneously for
u* and b*,  and ultimately g.

dE-==-((,fJ;I-.bfi+ .fi)~ -~  = 0 c5)
da 4

2E la-= __y+iJ+++J-)=O @)
db 4

Note that since 6 must be integer, adjustments to a*,
b*,  and g* must be made.

Let’s look at some examples. For our base case, let’s
assume the following:
f = 3322 loads (ad

A = 647,476 sq m (160 acres);
x of = 256.5 cu m/ha  and c = 5.0

cu m/skidder load); s = $.0134/m  ($O.O04l/ft.);  x = $2
per turn; r = $6.56/m  ($2  per ft) and I = S300.  Solving
(5)  and (6) simultaneously for a and b gives a*=10.83
and h*=2.92.  Therefore, s*=3 I .62.

Before  we consider  how 10  adjust the continuous value
of g*, let us consider the following parametric change\
IO this base ca\e.

Change s*

double landing cost; I = $600 22.26
cut s in half;s=$0.0067 17.21
cut area in half; A=323.738 26.52
cut area and turns in half; f=1661 14.76
cut area by a factor of 4; A = 161,869 22.26
double s; s = $0.0268 56.10

Thus, the model behaves as expected.

To find the final integer value of g, one would need
to evaluate (4) with fg+l and &j from Table 1, and
choose the harvest pattern that produces the smaller
total extraction cost. The harvest operation cost model
may be used to quickly determine the most efftcient
number of landings and grids in an area to be harvested.

Once the number of grids are known we can determine
the harvest pattern; i.e., the number of landings and
their placement. and the amount of roading. By refer-
ring to Table 1. we can see how we’ve reduced an infi-
nite field of solutions to a finite number of alternatives.
These, of course, vary by the number of grids. the grid
shapes, the number of landings, and the amount of
roading. Since there could be more than one harvest
pattern for a specific number of grids, the total extrac-
tion cost must be evaluated to determine the least COSI
alternative.

EXAMPLE PROBLEMS

In this section, we will illustrate the operational cost
model by solving a number of example problems. We
will consider examples where we will employ (4) to
model the total extraction costs. The problems have
been chosen to show the impact of different parameter
values.

First, we solve three problems all with the same cost
parameters, but with different volumes. The cost para-
meters are equivalent to the ones used in the example
problem earlier, including a road cost of $6.56 per
meter. We consider three volumes: 139.9, 209.8. and
279.8 m3/ha (24, 36, and 48 Mbf per acre). In the
139.9 m3/ha case, we solve (5) and (6) simultane-
ously for a and b we get a*=8.5  1, b*=2.32  and
~*=19.74.  By referring to Table I. we can round s* to
the nearest g in the table and select the correspondin
harvest pattern. From there we determine s, (1. h, 17 and
then evaluate (4) to find E, the total extraction CWI.
The results for this case and the other two volumes are
shown in Table 2. In the second set of example5 we
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increased the variable skidding cost by 25% to
$0.0 1675 per meter. The results are shown in Table 3.
Note that with the increased skid cost the shapes of the
grids change to compensate for the increased cost.

INTEGRATION OF OPERATIONAL
AND TACTICAL PLANS

The operational plan, as we’ve defined it, considers
only the cost for harvesting a specific stand. The tacti-
cal plan specifies where and when to harvest specific
tracts. The two must be integrated at some point in
order to develop the overall harvesting plan. Since
roading is a major decision variable at both levels, it
could be a means by which the two levels are integrat-
ed. This integration could lead to multiple stands shar-
ing the same roads. After the most economical land-
ing and road placements are known at the operational
level this integration could be enhanced.

Another reason for multiple roading alternatives is to
provide a basis for the integration of :hese operational
plans with the tactical plan. For example, consider a
fn ast with nine stands with an access road running
a, c rig the northern boundary and we select three of
those stands for harvest in the first period. Furthermore,
assume that the harvest patterns are similar to those in
Figure 4(a), then we have the flexibility to manipulate
the harvest patterns while maintaining minimum har-
vesting costs. Also, we might be able to share hauling
roads in an effort to minimize the total amount of road-
ing. If we can’t share the roading, the result to the tac-
tical plan might resemble Figure 4(b). But with shared
roading, the result might resemble Figure 4(c). It is
clear that some additional costs must be incurred to
upgrade the roads for additional capacity, but this cost

might be incurred in any plan.

(4 0) (4

Figure 4. Integration of roading

CONCLUSIONS
AND EU’I’URE  RESEARCH

In this paper we have developed a model of timber har-
vest costs that enables us to find the minimum opera-
tional costs. The model was developed such that the
size of the tract is considered so that the harvest pattern
could be found to minimize the cost of the harvesting
operations. We showed how these operational harvest
patterns can be used as a foundation for the integration
of the operational and tactical plans.

Future research will cover two related areas. First. we
will look at tracts that are not square. Obviously, with
the increasing use of GIS. more and more information
may be used to define tract boundaries in an effort to
make better harvesting decisions. Topography, soil
conditions, existing roads, stream locations. etc., will
all have an impact on the tract shape.

The second area of future research is to develop an
algorithm for efficiently solving the tactical level prob-
lem while considering the integration of the operational
plan. The results in Nelson and Brodie (1990) and
O’Hara  er al. (1989) indicate that in order to solve larg-
er problems the use of a heuristic-search algorithm will
be required.

-- _____________ ___

Table 2. Results of three example problems

V o l u m e  (mj/ha.)  u* b * g* Grids(g)  Columns Rows Landings E(S)
139.9 8.51 2.32 19.74 20 2 10 5 18,031
209.8 9.52 2.95 27.43 24 2 12 6 23,819
279.8 10.11 3.43 34.67 32 4 8 8 28,343

Table 3. Results of three example problems with increased skid cost

Volume (m’iha.)  a* b* * Grids (g) Columns Rows Landings E ( X )
139.9 8.86 2.65 23g47 24 2 12 6 20,884
209.8 9.90 3.31 32.81 3 2 4 8 8 27,354
279 8 10.85 3.82 41.45 40 4 IO 10 3 1,707
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