
United States 
Department of 
Agriculture 

forest Service 

Southern 
Research Station 

Research  P a p e r  
SRS-5 

Choosing a Transformation 
in Ana yses of Insect Counts 
from Contagious Distributions 
with Low BIIeans 



Choosing a Transformation in Analyses 
of Insect Counts from Contagious 
Distributions with Low Means 
W.D. Pepper, S.J. Zarnoch, G.L. DeBarr, 
P. de Groot, and C.D. Tangren 

Abstract guidelines are available on how to choose a transfomtion in 
parametric analyses of data where insect counts are low or 

Guidelines based on computer simulation are suggested for choosing a 
ttansformation of insect counts from negative binomial distributions with 

how to determine the influence of various controllable 

low mean counts and high levels of contagion. Typical values and ranges factors on the method of analyses. Thus, our objective was 
of negative binomial model parameters were determined by fitting the to develop guidelines to help researchers choose a 
model to data from 19 entomological field studies. Random sampling of transformation and to develop a simple program1 that 
negative binomial distributions was simulated and ANOVA's were 
performed on simulated data for randomized complete block designs with 

evaluates various tradeoffs and identifies an affordable 

treatment means corresponding to means of negative binomial experimental design with acceptable statistical test attributes. 
distributions. The influence of analysis variable, treatment-mean 
configuration, range in treatment means, significance level of statistical 
tests, level of contagion, number of blocks, and number of replications in 
time on observed power and Type I error of F-tests was studied. A Methods 
computer program was developed to recompute observed power of F-tests 
for any combination of these factors. The program facilitates choosing a Field Data 
transformation and may also be used to evaluate tradeoffs and determine 
affordable experimental factors for a future design with a given set of 
statistical attributes. Preliminary observations on frequency distributions of insect 

counts were obtained from data sets collected in 19 field 
Keywords: Contagious distribution, entomology, transformation, studies conducted on various pheromone "treatments" for the 
variance-mean relationship, variance stabilization. white pine cone beetle, Conophthorus coniperda (Schwarz), 

Introduction 

Entomological studies involving the field testing of different 
treatments require consideration of a number of controllable 
factors in the planning and analysis phases of the work. In 
the planning stage, factors common to many studies, such as 
the number of replicates in space or time and the 
significance level for tests, must be considered. In some 
studies, the effect of low insect counts and the skewness of 
their dis~btltion must also be considered. A common 
problem with insect counts is that the frequency distribution 
is frequently skewed to the right, resembling a nonnoml 
discrete distribution where the variance is related to the 
mean. Thus, when treatmen& differ, heterogeneous 

in the United States and Canada (Birgersson and others 
1995, DeBarr and others 1995). These pheromone 
treatments were field tested by installing a trap on a selected 
tree and baiting it with a preparation (usually chemical 
formulations); the procedure is replicated in additional trees 
for each treatment and blocking may or may not be used. 
Thus, the trap on an individual tree is the experimental or 
observational unit. The traps are revisited after some period 
of time and the insects are removed and counted. If the 
procedure is repeated (usually), the traps are rebaited with 
the same pheromone treatment and reinstalled on the same 
tree, or more commonly, new random assignments of 
treatments are used to reduce tree position bias. The 
observational response for a treatment is the insect count at 
the end of the designated time period or the mean count per 

variance is guaranteed, Parmetric analyses of such data 
tend to produce too many significant results in F-tests and t- 
tests (Snedecor and Cochran 1967). Therefore, in the 
analysis phase of a study, two questions must be answered: 
(1) does the data require transformation, and (2) what type 
of transformation is required to produce a variate with a 
more stable variance and a frequency distribution that is 
approximately normal? The data analyst also decides 
whether to rank the response from experimental units by 
treatment and perform nonparametric analyses or perform 
parmetric analyses on the ranks (Conover 1980). Few 

'The computer program described in this paper is available on request with 
the understanding that the U.S. Department of Agriculture cannot assure its 
accuracy, completeness, =liability, or suitability for any other purpose than 
that reported. The recipient may not assert any propriety rights thereto nor 
represent it to anyone as other than a Government-produced computer 
program. The program is written in SAS code but is not a packaged SAS 
procedure and is not available in other common statistical software packages 
such as BMDP and Systat. The program (SIMPWR) is available from the 
senior author upon request: W.D. Pepper, U.S. Depattment of Agriculture, 
Forest Service, Southern Research Station, Forestry Sciences Laboratory, 
320 Green Street, Athens, GA 30602. 



trap where the average is calculated over several time 
periods. In this paper, the observational response is the 
mean count per trap per week. The range, average value of 
insect counts and degree of contagion with respect to counts 
were observed. LRvel of contagion is the degree to which 
the frequencies of high counts and counts near zero exceed 
those expected in a random process such as the Poisson. 
a t e  number of pheromone treatments and the number of 
replications in space and time were observed to determine 
typical values and ranges (table 1). These field observations 
were a prerequisite to pedoMng computer simulations 
comparing alternative methods of analysis on computer- 
generated data sets with attributes similar to those observed 
in the 19 field studies. 

Statistical Distributions and Transformations 

To transform data, its true distribution must be determined. 
First, a basic statistical model that fits data from a wide 
range of field conditions should be identified. at is  model is 
then used to derive a transformation for analysis. Because 
ecologists almost exclusively use the negative binomial 
(NB) model to describe contagious distributions (Kuno 
1991), we chose to fit this model to insect counts obtained 
from the United States-Canadian field studies. 

With the NB model, the probability, P,, that an 
observational unit will contain x = 0, 1, 2, ... insects is 

where 

P = pk, 
Q = l+P, 
p = the population mean, and 
k -. the contagion parameter. 

The I\ITB distribution converges to other distributions as k 
varies over its range (Anscombe 1949). When k is 
considerably large, the counts begin to approach 
randomess and a Poisson model may fit the data. Indeed, 
as k becomes infinitely large, the NB distribution converges 
to the Poisson distribution. When k = 1, the NB distribution 
reduces to the discrete geometric distribution. Values of k 
in the interval 0 < k < 1 are associated with high levels of 
contagion which is characteristic of the NB dis~bution. As 
k approaches zero, the count distribution approaches the 
logarithmic series. 

The population mean p is estimated as the ariwetic average 
per trap per experimntal unit (m) where the average is 
calculated over replications in time. The variance of 
individual counts is 

Var (x )  = p (1 + p1k) . (2) 

Thus, variances associated with different treamnts with a 
comon value of k are heterogeneous by definition. The 
moment estimator for Var(x) is the sample variance s2. The 
parameter k is estimated with Anscombe's (1949) method 2 
which uses successive approximtion to choose a value of E 
that makes the following expression approximately equal: 

In this expression, f, is the proportion of the total number of 
traps with a zero count and (1 + m/ li)-' is the estimated 
probability of a zero count computed with the 1VlB model, 
This is the most efficient estimation method proposed by 
Anscombe (1949) for estimting a single population value of 
kwhenk<land l<p<lO.  

Transformations of counts were discussed in reports 
published over 60 years ago. Among the first were the 
square root transformation (Bartlett 1936) and the 
logarithmic transformation (Williams 1937). These early 
derivations were based on an assumed linear relationship 
between the mean (p) and variance (a ') of x, a = ap, where 
a is constant. From the linear relationship, a new variate, y = 
f(x), was derived where the variance of y is constant. Beall 
(1942) extended this relationship to the nonlinear case, 

which is required to describe some Pgrpes of field data. This 
relationship is characteristic of the NB distribution where llb 
= k, the contagion parameter in the NB model. From this 
nonlinear relationship, Beall (1942) derived the variate, 

where the vasiance of y is consmt. 

Thus, by estimting b in terms of the sample man  and 
frequency of zero counts and applying the transformation, 
one obtains the variate y that is theoretically appropriate for 
use in parmtric statistical analyses. It can be shown that 
the square root and logarithmic trans 
cases of Beall's (1942) transformation. 



Table l4tatistics from Weld experiment in the United States and Canada 

Treat- Replicaeon Replication 
Test ments in space in time ma s2/m gb Pr >X2 

a m is sample mean. 
k" is estimate of contagion parameter. 
Every trap had 0 or 1. 
Located in Ontario, Canada. 

Kuno (1991) cited several comprehensive textbooks and where 
review articles in a recent review of methodology for 
sampling and analyzing insect populations. Work has a and b = constants. 

continued on the use of variance-mean relationships to 
describe insect populations. Two types of relationships, From this, Bliss (1941) derives the variance stabilizing 

empirical and deductive, have been used to describe the transformation, 

variance-mean relationship. One is exemplified by the 
empirical power equation, 

where 
(6) 

b = estimate from data fitted to the variance-mean model. 



A second variance-mean relationship is Iwao and Kuno's 
(1968) deductive quadratic equation, 

where 

A and B = parameters. 

This equation includes Beall's (1942) formula as a special 
case. The variance stabilizing transfomtion is also quite 
similar to Beallfs (1942) transformation. Because we were 
confident that the NB model would fit our data, Beall's 
(1942) transformation seemed the most appropriate. We 
saw no need for the generality of the deductive equation of 
Iwao and Kuno (1968). For comparison, we chose log- 
transformed counts, the power bransfomtion, ranked 
values, and untransforrned counts as additional analysis 
variables. Alternative approaches for optimizing power 
functions are described elsewhere (Bliss 1941, Box and Cox 
1964, Perry 1987). 

Computer Simulation 

A desirable design and analysis controls Type I error and 
has an acceptable level of power for F-tests of treatments. 
Our intent was to evaluate alternative designs and 
transformations with respect to these criteria. However, an 
analytical solution would be very complex because it would 
require deriving the distribution of a pseudo F-statistic when 
the underlying transformation does not have a normal 
distribution. Thus, we elected to simulate a range of 
experimental and data-related conditions and compute 
observed power and Type I error rates for F-tests of 
treatments. 

Fixed and Variable Factors 

We used a randomized complete block (RCB) design to 
compare alternative methods of analyses because this design 
was used most often in the 19 United States-Canadian 
studies . The number of treatments was constant at five 
because this was a typical value. Number of blocks was 
two, four, or six. It was assumed that insects were collected 
and empty traps reinstalled on three separate occasions 
1 week apart in each simulated experiment and on six 
occasions 1 week apart in a second replication of these 
experiments. 

Differential treatment effects were produced in simulated 
studies by generating data for a treament or a group of 
treatments from a specified NB distribution. 

Random NB counts were generated by first defining a 
gamma variable (Boswell and Patil 1970) with shape 
parameter 

(the NB contagion parameter) and scale parameter 

p=pn. 

where 

p = the mean of the NB distribution. 

Using SAS function RANGAM (SAS Institute Inc. 1988a), 
we generated values of the gamma variable, 

Subsequently, the value of x was used as the mean of a 
Poisson distribution (Johnson and Kotz, 1969) and SAS 
function RANPOI was used to generate a random value of 

Boswell and Patil(1970) show that y has a NB distribution 
with mean p and contagion parameter k . Thus, when 
selected treatments had different means, so did the NB 
distribution treatments. The parameter k was varied to 
include the range of estimates obtained from analyses of the 
United States-Canadian studies, 

k = 0.1, 0.5, and 0.75. (1 3) 

The likelihood of a significant F-test depends on the range 
of treatment means, 6 = maximum mean-minimum mean, 
and the configuration (spacing) of means within the range. 
In this simulation study, we used treatment-man 
configurations described by Young and Young (1991) plus 
one configuration where all means were equal (fig. 1). 



Figure 1-Treatment-mean configurations used in computer simulations. 
(A) Two subsets of two or more treatments-i.e., treatment means are 
equal within subsets but different between subsets; number of NB 
populations = 2. This configuration maximizes the power of the F-test of 
treatments. (B) All treatment means equal except the smallest and largest 
which differ from one another; number of NB populations = 3. This 
configuration minimizes the power of the F-test of treatments. (C) All 
treatment means equal, except one; number of NB populations = 2. This 
configuration results in intermediate power. 

The smallest mean in each configuration has a value of 0.5. 
This mean is intended to simulate the value of a control 
treatment. For a given value of k, the control-treatment 
mean will have a much smaller variance than a treatment 
with a mean count of six because the variance of a mean 
count is 

where 

n = number of replications. 

When no contrasts involving the control treatment are 
planned, some data analysts exclude the control treatment 
from analysis and reduce overall heterogeneity of variance. 
However, we elected to judge the perfomance of selected 
transfomations in the presence of maximum heterogeneity. 

In the simulations, each configuration in figure 1 was 
associated with each of the three values of k to define 
hypothetical NI3 populations. Additional populations were 
defined by using ranges of 2,4, and 6 and sampled 1,000 
times for each RCB design with both 3 and 6 replications in 
time. 

Comparing Transformations in Analyses 

Each simulated study data set was subjected to: (1) A 
parametric ANOVA with SAS procedure GLM (SAS 
Institute Inc. 1988b) on mean count per trap by treatment 
and block with means based on untransfomed data 
averaged over both three and six collection dates; (2) 
parametric ANOVA's on mean count per trap with means 
based on the transfomations, 

y = log (x t- 1) 

where 

2 = the mean count for a given trap, 
k̂  = the estimated NB contagion parameter, and 
b = the estimated parameter for the power function. 

and (3) an ANOVA on ranks by block of the mean counts 
described in (1). We elected to forego classic non- 
parametric analyses. Friedman's test would be the 
nonparametric method of choice, but Conover (1980) states 
that the parametric F-test on ranks performs as well or better 
than Friedman's test. Our comparisons of analysis variables 
were based on the ANOVA F-tests. We conducted F-tests 
at the 1 percent, 5 percent, and 10 percent levels and tallied 
conclusions as correct or incorrect. When treatment sets 
were completely homogenous in our simulated studies, we 
computed an observed Type I error rate by calculating the 
proportion of F-tests where significance was declared at the 
nominal level. These observed proportions derived from the 
five methods of transfodng counts were compared. The 
best analysis variable will yield a proportion that is the 
smallest and does not exceed the nominal rate. 

In simulated studies with differential treatment effects, we 
computed observed power of Ptests. This is the proportion 
of F-tests at 1 percent, 5 percent, and 10 percent that 
correctly reject the null hypothesis and detect treatment 
differences. Observed power is used as a second criterion 
for comparing performance of the five analysis variables. 



Table 2-Factors studied in simulation expe~ment 

Factors used Levels of factors 

Analysis variables Y" R Y ~  we  BY^ P Y ~  
Significance level for tests (a) 0.01,0.05,0.10 
Contagion parameter (k) 0.10,0.50,0.75 
Replication in space (B) 2,4,6 
Replication in time (R) 3,6 
Range, maximum man-minimum mean, (6) 2,4,6 
Treatment-mean configuration A, B, Cf 

a Untransfomed counts, 
Ranked values of counts. 
Logarithmic transformation, log (x+l). 
Beall's (1942) transformation, sinh -' (C /x)Os' (8)O.'. 
Power transformation, x l-bn. 

Configurations A, B, and C are described in figure 1. 

We judged the relative performance of each analysis 
variable and checked for consistency among designs of 
different size, different levels of contagion in NB 
populations, different treatment-mean configurations, and 
different ranges of treatment-mean values and between 
different numbers of replication in time (table 2). 

Results 

Modeling Field Data 

Table 1 shows estimates of NB population parameters p and 
k for the field data. The estimated mean, (m), is defined as 
the mean insect count per trap averaged over collection 
dates, block, and treatments. Experimental estimates range 
from slightly more than seven to less than one. Treatment 
means (not shown) within experimnts range from 14 to less 
than 1. The low experimental estimates of k, C s 0.67, 
indicate a high degree of contagion. The high variance- 
mean ratios are characteristic of the NB distribution. 

Goodness-of-fit tests based on Pearson's (1900) chi-square 
statistic were performed with data from each field test. This 
test cowares observed frequencies in count categories 
0,1,2, ... with expected frequencies detedned by the 
proposed model. Categories with expected frequencies < 1 
are combined (Snedecor and Cochran 1967). The NB 
model fit well, 0.10 I, P I, 0.87, in 15 of the 19 field studies. 
Of the remaining four tests, three had P 5 0.02 and the 
fourth only had two count categories, 0 and 1, prohibiting 
the goodness-of-fit test. 

Computer Simulation Results 

Type, f Error-Type I errxs occuxed when &eatmemts in 
the homogeneous group were declared significantly 
different. Type I error rates were observed in simulated 
analyses with each transfomtion for all combinations of 
k-values, replication in time, number of blocks, and a-levels 
of 0.01,0.05, and 0.10. Results were good for all analysis 
variables. For all transformations except ranks, the 
observed Type I error rate never exceeded the nominal value 
by more than 1 percent. Occasionally, observed rates in 
analyses of ranked values exceeded the nominal value by 
2 percent- still not a serious discrepancy. 

Treatment Mean Configuration A-Results for 
treatment-mean configuration A are shown in figures 2 to 4 
for various combinations of k, replications (R) in time and 
range (6) in treatment means. Figure 2 (A-F) shows 
observed power versus number of blocks when testing at the 
0.10 level for the highest level of contagion in the data (k = 
0.1). M e n  testing at the 0.05 level (k = 0. I), observed 
power was generally well below 0.80 regardless of required 
test precision (size of 6) and amount of replication (not 
shown in figure 2). In these figures, graphs for ranked 
values, log-transfomed values, and Beall's (1942) 
transformation generally dominate. 

M e n  k = 0.1, testing at the 0.10 level still does not result in 
a satisfactory analysis in most cases. The number of blocks 
needed to detect a treatmnt-man difference of 6 = 2 
appears to be at least 10. 



(A) R=3, b=2, k=0.1, a=O. 1 0 (B) R=6,Zi=2,k=0.iya=.0.i0 
0.3 r 0.6 r 

(C) R=3, b=4, k=0.1, a-0.1 0 

OS5 1 

(E) R=3, b=6, k=0.1, a=0.10 
0a6 i 

(D) R=6, b=4, k=0.1, a=0.10 
0.8 r 

/ 

(F) R=6, 6=6, k=O. 1, a=0.10 

Number of Blocks Number of Blocks 

Figure 2 (A-F)--Relationships between observed power of F-tests and number of blocks when treatment-mean configuration = A, k = 0.1, and a = 0.10 for 
five functions of insect counts: ranks (. . . . .), logarithmic transfornation ( - - ), power transfornation ( - - - ), Beall's (1942) transfornation 
(-), and the untransformed count (- . . - *). 



(A) R=3, 6=2, k=0.5, az.05 

0.8 

(C) R=3, 6=4, k=0.5, a=.05 

2 4 6 

(D) R=6, 6=4, k=0.5, a=.05 

(E) R=3,6=6,k=0.5,a=.05 (F) R=6, 6=6, k=0.5, a=.05 
1.1 r 

Number of Blocks Number of Blocks 

Figure 3 (A-WRelationship between observed power of F-tests and number of blocks when treatment-means configuration = A, k = 0.5, and a = 0.05 for 
five functions of insect counts: ranks (. . . . .), logarithmic transformation ( - - ), power transformation ( - - - ), Beall's (1942) transformation 
(-1, and the untransfonned count (- . - . .). 



(A) R=3, b=2, kz0.75, a=.05 
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(B) R=6,b=2,k=0.75,a=.05 

(C) R=3, b=4, k=0.75, a=.05 (D) R=6, b=4, k=0.75, a=.05 

(E) R=3,6=6,k=0.75,a=.05 

2 4 6 

(F) R=6,b=6,k=0.75,a=.05 

I-' i 

Number of Blocks Number of Blocks 

Figure 4 (A-%Relationships between observed power of F-tests and number of blocks when treatment-man configuration = A, k = 0.75, and a = 0.05 for 
five functions of insect counts: ranks (. . . . .), logarithmic transformation ( - - ), power transformation ( - - - ), Beall's (1942) transfornation 
(-1, and the u n t r a n s f o d  count (- . . - -1. 



When 0.5 s k I 0.75 and a = 0.05 (figures 3 to 41, four or 
five blocks are generally needed to keep observed power at 
or above 0.80 regardless of mount of replication in time and 
value of 6. Occasionally, three blocks suffice if 6 2 4 with 
six replications in time. When testing at the 0.01 level, the 
same trends are observed, but observed power shifts 
downward too much. 

In most comparisons, analysis variables of choice are ranks 
and the log transfomation. In many cases, the choice 
between these two variables in of power is not clear, 
and other factors such as relative performance with respect to 
Type I error and ease of analysis must be considered. 

Treatment-Mean Configuration B-Of the three 
configurations tested, configuration B analyses result in the 
lowest values of observed power. In figure 1, this is 
intuitively clear because the range involves only two means 
resulting in minimal replication. The low power poses a 
serious problem to the researcher with limited resources. 

When k = 0.1 and a = 0.10, the experiment with the most 
replication will not provide sufficient power to detect the 
largest value of 6 considered in this study. 

When k = 0.50 and a = 0.05, the largest experiments do not 
provide sufficient power unless R > 3,6  > 4, or both. When 
R = 3, 6 = 6, and B = 6, observed power is near 0.8 for tests 
of all analysis variables except the untransfonned count. If 
we increase a to 0.10, observed power can be kept at or 
above 0.8 with four to six blocks depending on values of R 
and 6. 

When k = 0.75 and a = 0.05, observed power can be kept 
above 0.8 with four, five, or six blocks depending on values 
of R and 6. If R = 6 and 6 = 6, three blocks will be 
sufficient. 

Treatment-Mean Configuration C-When means are in a 
C configuration, observed power in analyses of treatments is 
between maimum-power-A-configuration and minimum- 
power-B-configuration values. However, when k = 0.1 and 
a = 0.10, the experiments with the most replication provided 
values of observed power below 0.8. When 0.5 5 k 5 0.75 
and a = 0.05, observed power can be maintained at 0.8 or 
better with four to six blocks depending on the value of R 
and 6. 

A Numerical Example with the Computer Program 

We assume that users will want to know the value of 
observed power for various combinations of controllable 

factors. Because our tables and graphs are cumbersome, we 
developed a partidfly interactive SAS computer program 
(SIMPm) that computes observed power for any 
combination of experimental factors used in our study. 
However, this is not a prediction procedure and the user 
must choose input values only from those used in our 
simulation studies. The program simply allows the user to 
determine a tabulated entry of power without handling 
volumes of computer simulation output. 

The following example illustrates the use of SIMPWR with 
some basic input from Test 7b data, table 1. From table 1, 
we obtain and input a value of 4.5 for m, the experimental 
mean. We also input the proportion of traps with zero 
counts, f, = 0.35 (not shown). Finally, we must input the 
values shown in figure 5. In this example, we choose to test 
at the 5 percent level, a = 0.05. The values of m and f, are 
used by the program to estimate k = 0.43. The program 
determines that this estimate is nearer the value of k = 0.5 
than 0.1 or 0.75. Thus k = 0.5 is used in the program. We 
choose B = 4, the number of proposed blocks. Three 
replications in time are proposed for each treatment, and we 
wish to detect differences between means as close ;bs two 
units apart, 6 = 2. Furthermore, we assume that true 
treatment means have the A configuration. Information 
required by the window shown in figure 5 is entered, and 
used to calculate the observed power. Both input values 
and observed power are printed as output. In this case 
POWER = 0.49 and 0.56 for the logarithmic and rank 
transformations, respectively. These values are 
unacceptably low and we must change experimental or test 
factors to achieve POWER 2 0.8. 

If the design is installed, we are restricted to changes in 
statistical test attributes. In this second run, we set a = 
0.10 with additional factors unchanged. This results in 
POWER = 0.66 and 0.69 for the logarithmic and rank 
transformations, respectively-still unacceptably low. A 
third possibility is to set 6 = 4 and set other factors at the 
original values. This results in POWER = 0.78 and 0.81, 
respectively, for the logarithmic and rank transformations. 
These values may be regarded as acceptable, but the 
analysis will be less sensitive in detecting treatment-mean 
differences. 

Suppose we have estimates f , and m from a preliminary 
sample and are at liberty to choose quantity of replication in 
space and time to control power. We run SIMPWR again 
with all factors at their originally proposed values except 
R = 6. This results in POWER = 0.82 and 0.88 for the 
logarithmic and rank transformations, respectively. Linear 
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Comand ===> 

WLCOPJZE: TO THE SIMULATED POWER PROG 

ENTER VALUES FOR THE VARIRBLES ALPHA, FO, &I, B, R, DELTA 

RMD COWIGURATION. AFTER DATA IS ENTERED FOR THE LAST 

VARImLE THE SIMUUTED POWR OF THE F-TEST WILL BE COMPUTED. 

PRESS ENTER TO START DATA ENTRY. 

: 1 m  
Comand ===> 

ALPHA .05 FO .35 M 4.5 B 4 
I 

I 
I 

R 3 DELTA 2 CONFIGURATION A 

SMULAED POWER PROGRAM FOR F-TESTS 
THE INPUT DATA AND FOUR SETS OF OUTPUT 

CONFIG TRANSFRM ALPHA FO M KHAT K B R DELTA P O W R  

A RANK 0.05 0.35 4.5 0.43 0.5 4 3 2 0.56237 
A LOG 0.05 0.35 4.5 0.43 0.5 4 3 2 0.48549 

A RANK 0.1 0.35 4.5 0.43 0.5 4 3 2 0.68612 
A LOG 0.1 0.35 4.5 0.43 0.5 4 3 2 0.66366 

A RANK 0.05 0.35 4.5 0.43 0.5 4 3 4 0.80943 
A LOG 0.05 0.35 4.5 0.43 0.5 4 3 4 0.77834 

A K 0.05 0.35 4.5 0.43 0.5 4 6 2 0.88025 
A LOG 0.05 0.35 4.5 0.43 0.5 4 6 2 0.82 186 

Figure 5-Input window and four sets of output from SAS program SIMPWR. 



interpolation is possible, but must be used with caution 
because relationships are not linear. In this example, we 
may average the values of P O m R  corresponding to the 
rank transfomtion at R =3 and R = 6, (0.81 + 0.88)/2 = 
0.845, which corresponds to a value of R between 3 and 6. 
If POVVlER = 0.845 is acceptable, R = 5 would be a prudent 
choice. 

Discussion and Conclusions 

For a given treatment-mean configuration, observed power 
of the F-test for a given analysis variable is an increasing 
function of a, k, number of blocks, number of replications 
in time, and range in treatment means to be detected. The 
volumes of graphs and tables produced with computer 
simulations present a complex picture. This occurs in part 
because most independent factors interact with at least one 
other independent factor to exert an influence on observed 
power. For instance, the effect of increasing number of 
blocks depends on the level of k (figs. 2 to 4). However, the 
following generalizations can be made: 

The level of power relationships for all analysis variables 
depends on treatment-mean configuration. For a given 
relationship, configuration A produces maximum power. 
For the same relationship, configuration B produces 
minimum power and configuration C intermediate power. 
All three configurations occur in pheromone field tests. 
However, if a researcher cannot predict which 
configuration will occur, we recommend using 
configuration B. This is a conservative approach and 
should help the researcher avert an overestimation of 
power for a proposed experiment. 

Regardless of other factors, the analysis variables 
cosfesponding to rank, logarithmic, and Beall's (1942) 
transformations generally dominate the other two with 
respect to observed power relationships. The 
transfomtion of choice is generally between ranked 
values and log-transform& values and in many cases, 
choosing will depend on how one views ease of analysis. 
It is not surprising that the logarithmic transfomtion has 
a stabilizing effect on x. The discrete variable x has a 
frequency distribution which is skewed to the right and 
resembles the lognormal distribution of the continuous 
variable z where log (z) has a normal distribution and the 
estimator for the mean of z is, 

where 

2 = the sample mean, and 
2 = the sample variance (Johnson and Kotz 1970). 

This estimator should be used for the discrete variable x, 

where 

m = a treatment mean, and 
2 = the ANOVA error mean square on the log scale. 

Beall's (1942) transformation was not competitive as a 
function of k. This transformation will perform best when 
the true value of k is known, which never occurs in practice. 
So, even though we knew the value of k for our 
distributions, we estimated the parameter with our data. We 
believe this estimation error in k causes Beall's (1942) 
transfornation to be less competitive. In our initial 
simulations, we inadvertently used the true value of k and 
Beall's (1942) transformation performed well. 

Ranked values competed well for several reasons. These 
NB distributions have a lot of positive skewness which 
results in low power for the parametric F-test on raw counts. 
Skewness is not as much an issue with ranked values 
because the test statistic is not a function of the raw data, 
which reflect the magnitude of the skewness directly. Test 
statistics may be identical with normally distributed data or 
with highly skewed data as long as the ranks are identical, 
so power is increased by using the rank transformation, 
which apparently alleviates the problem of skewness as well 
as log transfornation. 

* The level of contagion in the data has a dramatic effect on 
observed power. This is explained by the influence of k 
on the variance of individual NB counts for a given mean, 

and the inverse relationship between power and the 
variance. For k = 0.1, 0.5, and 0.75, the variance of x is 
respectively p + 10 p2, p + 2p2, and p + 4p2/3. When k r, 
0.1, mntaining a satisfactory level of power is difficult 
without making compromises such as increasing the level of 
significance for testing, increasing 6 = maximum mean 
difference to be detected, or increasing replication. 



As shown in the numerical example, S M P M  can be used 
to facilitate the choice of analysis for existing data. 
Furthemre, if preli~nary estimtes f, and m are 
available, the program can be used to evaluate tradeoffs and 
detedne affordable experimntal factors for a future 
design with a given set of statistical test attributes. 
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