
U.S. Department of Agriculture
Forest Service Research Paper SO-117

R.anliing Forestry Investm~ents
With

Parametric Linear Programming

Paul A. Murphy

Southern Forest Experiment Station
Forest Service

U.S. Department of -4griculture

1976





-Additional  keywords. Capital budgeting,
financial analysis, investment selection.

Forest !and  managers and public agencies are
often faced with the task of allocating limited
funds  to a zumber  of competing investments
such as precommercial  thinning, type conversion,
or timber stand Improvement. If the only con-
straint is the amount of money, project selection
Is straightforjvard.  The ratio of the present value
of money :*eceived to money spent is calculated
for each project, the ratios are ranked, and proj-
ects are chosen by moving down the rankings
until the funds are eshauated  (Lorie  and Savage
1955).

\1!heii  multiple constraints exist, linear pro-
gramming is needed. Weingartner  (1963) ap-
plied mnthemntical  programming to capital
budgeting including allocation of a fixed sum.
TJ\-o other studies (Teeguarden 2nd Van Sperber
;9G3,  Buongiorno  and Teepuarden  19ri3)  showed
that  Douglas-fir reforestation projects could
best be selected by linear lwog-rnmming.

Hon.ever,  linear programming by itself lacks
a useful feature of simple ranking. Ranking pro-
x-ides a solution for all levels of i’unding;  linear
pl‘clgranmiing  gi\-es a solution for only’one. Other
constrnints  such as manpower, equipment, and
nursery capacity are usually known in advance,
but funding is different. Annual budgets may
be allocated at a different organization level.
Consequently, the exact amount is not known
far in advance  and may change. A ranking of
projects lvould  cil.cumscribe  this problem, if it
could be done under multiple con,stl.nints.

R a n k i n g  bestry bvestments  W i t h
Paramdric 1 inear  P r o g r a m m i n g

Paul A. Murphy

This paper describes a procedure for ranking
forestry investments that are bound by multiple
constraints. This procedure-which uses para-
metric linear programming-combines the
advantages of simple  ranking and linear pro-
gramming.

Mcdel  Fctmulation

Parametric linear programming is applied to
a problem only after an initial solution has been
found by the simplex method. The dual simplex
method-the algorithm used for parameteriza-
tion-is then applied to the primal problem. Both
methods use the same notation. For these rea-
sons, the simplex method will be outlined briefly,
and then i)nrnmetric  linear programming and
its application to ranking investments will be
discussed. The notation and development used
here are from Hadley (1962).

The tgpjcal  linear programming problem is
max 2 = c’x,

subject to the restrictions,
Ax=b,

x 2 0, Ii,’
where A is an m x n matrix, x and b are n x 1
colmm  vectors, c’ is a 1 x n row vector, and o is
an n x 1 vector of zeroes.

If the matrix B is composed of m linearly inde-
pendent colmms  of A, then any column (tj of  A
can be written as a linear combination of the
columns of B,

aj = By,. (3)
This matrix B also provides a basic solution to
the simultaneous linear equations represented by
equation (1). This solution xR is determined as
follows:

xn = B-lb.
Corresponding to a basic solution xn, there is

nn associated price vector cl%, which is composed



of rn elements from vector c.
A basic solution \Vhich  satisfies restriction (2)

is called a basic  feasible solution. Assumjng  there
is a basic feasible solution, the sjmplex  method
pro\-ides a means of jmpro\-jng  it-that is, in-
creasing the value of

2 = Cn’xB. (4)
Equation (3) may be rewritten as

m
clj  = 1 .\Fijbi.

i=l
Any \Tector  b,. in the basis may be written in
terms of the remaining basis vectors and a
vector c(  j not in the basis.

By substituting n,  for b,-,  a new basic solution is
obtained,

b =y XRibi  $ XBr  [nj/yrj  ~~~l,bi/yrjl
i = l
i#r

For the new solution to be feasible,
XBi  - XBryi  j/yrj  2 0, i# r
z 2 0, i = r.

r
To maintain feasibility, the vect.or  b,. to be re-
placed is determined by

>cBr/y,j  = min { xBi/)‘ij,yi,  > O}
j

The yector  to enter should improve the basic
feasible solution. Equation (4) may be rewritten
with nj substituted for b,,

2 = irliIXBi -XBrYij] CBi + XISrCj/Yrj- (5)

i#:r
Since

CBr (XBr - XRrYi  j/Yij)  L_ 0,
the i=r term can be included in the summation,
and equation (5) becomes

m m
;= 1 XB,CBi  -X~r/Yrj 2  YijCBi +  XBvCj/Yrjt

i = l i = l
which is reduced to

m
z*= Z + [Cj - z YijCBil  XBr/Yrj* (6)

i=l
For there to be an increase in the objective
function.

m
Cj - i;;flYijCBi  > 0.

The usual criterion for selecting the vector to
enter is to pick the one with the mnsjmum
(Cj - Zj) , where

m
Zj = z YIjXlli. (7)

i=l
Given a basic feasible solution, a new basic

feasible solution with an improved objective
function can be found by the simplex method.
The process can terminate in two ways:

(1) one or more zj - cl <O, and for each
Zj -Cj  CO,  yij  <, 0 for all i=l, . . . ,m

(2) all Zj - c,Z  0 for the columns of A not in
the basis.

If situation (2) occurs, there is an optimal basic
feasible solution.

Suppose there is an optimal basic feasible solu-
tion. We want to increase or decrease the con-
straints by changing the requirements vector b,

b* = b + er.
The vector Y is specified, and Q is a non-negative
scalar (Hndley 1962, p. 382). Changing b
changes the solution, which becomes

ZR*=B-‘(b+@r),
= xg + ev.

Even though the solution x,,* changes, opti-
mality is maintained as long as the solution re-
mains feasible because the values of the zj - cj’s
are affected only by the basis vectors and not by
the solution vector. If any of the v,‘s  in vector v
are negative, the point where the first xnt be-
comes less than or equal to zero is

6 = niin  {--Xni/VipVi  < 0). (8)
r i

The dual simplex algorithm can be applied in
this Fjtuatjon.  GilTen a solution that is infeasible
but Tvhere  all z,-cj’s 20 for vectors not in the
basis, the dual simplex can be used to obtain a
basic feasible solution while preserving zj-Cj>  0
for all nonbasis  yectors.  Once a basic feasible
solution is reached, it is also optimal.

The vector to leave the basis is already known
by equation (8). Only the vector to enter the
basis remains to be determined.

Given the primal problem,
Ax = b,  x 20,  max z = c’x,

the dual formulation is
A’,w  >c, min Z = b’w,

A’w  >c, (9)

2



\vliere  the IT’i’S are unrestricted in sign.

If  the primal  S@l\ltiOn 11%  all Zj -Cj  20 EOY  all
sectors not jn the basis and one of the x,ji’s  is
negative, the co]-i~esponding solution to the dual
I(’  is not optimal.

Let us now consider en ‘B-l as a solution for qu’,
or

w’ e c,,  ‘B-’
For it to be a solutjon,  only ?he jneqllnljty  A’II~Lc
need -be satisfied.

cn  ‘B-IA yc’.
~13 ‘B-‘(I~  >cj.

Since yj = B-‘uj,
Cl1 ‘1Jj 2 Cj.

From relation (7)) it may be written as
Zj> Cj, o r  Z j - C j  20,

which is a characteristic of the original problem.
Hence,

~1, ‘B*‘c(j  - “yvj Lcj,
Zj - OJ’rj >Cj
Oy,j (Zj -i Cj- (10)

Before we derjve  the critei-ion  for  the \:ector
to enter fl.om expression (lo), let us look again
at equation (6). For there to be an jncrease i n

the objective functjon
Xnr  (Cj -Zj) /J’ri  20.

If x,]~ were just slightly negative, yri would have
to be less than zero for 2 >_ 2, since Cj -Zj< 0.
Therefore yrj < 0 in expression (IO). and it fol-
lows that 0<0.

For a maximum increase in the objecti\le  func-
tion, the vector a,;  to enter the basis  iz determined
by

0 = (&-Cl;)  /yt.k = 177r?X (Zj - Cj) /Yl.j,
ypj<  0. (11)

As elements of the requirements vector are
changed by right-hand side parnmeterjzatjon,  a
:erjes  of optimal bases develops. The vector  to
leave and the vector to enter the basis at each
step are deIermined  by expressions (8) and
(1 l), respectively.

Let us l.etnrn  to our original problem. We are
faced u3h de]?\-ing  a set of priorities from a set
of in\-estment  projects under multiple con-
>trnints.  Given a certain budget, linear program-
ming can select the set of projects that maxi-
mizes net present 7-nlue. Wjth  parametric linear

pl‘ogl‘~“mnl~llg, sets of investment projects can
be selected for different ranges of funding. A list
of priorities that js valid for any level of funding
can be derived in the followjng  manner.

The funding )e\-el in the original requirements
;:ector  is set equal to or less than the amount of
money required for the smallest project. This
procedure insures that no more than one project
enters into the initial solution. Then the simplex
method or other procedure is used to arrive at
an optimal basic feasible solution. Yext the
budget level is varied-that is, increased-by
means of parametric linear programming. As
the budget lesel is jncl-eased,  projects enter the
solution one by one. The order in which the in-
vestments enter the solution determines their
priority for fwo  reasons. A given solution re-
mains optimal over the region in which it
remains feasjble,  and once a solution is no longer
EeasibJe,  the dual simplex 1)rocedilI.e  Felects a
vector to enter the basis such that the new solu-
tion is both optimal and feasible.

Examples

Most linear programming systems now avail-
able can also do either right-hand side or objec-
tive row parnmeterization.  The IJNlVAC 1108
Linear Programming System was used for the
Eollowi~~g  examples. Ranking was first done with
the funding level as the only constraint to illu-
strate that ranking with parametric linear pro-
gramnrjng  is equivalent to simple ranking when
only one restriction exists. The second example
illustrates the effectiveness of ranking with
parametric linear programming when multiple
constraints exist.

As the result  of succession often aided  by
timber cutting practices, extensive acreages of
pine sites  in the ?outh  are now dominated by
hardwood forest types’. Converting these hard-
wood stands to pine offers one of the best ways
of jncreasing  the region’s pine timber supply. In
southern Alabama alone, over 3 million acresof
private, nonindustrial forest lan’d could be con-
verted to pine (table 1). To set priorities these
lands were classified according to the size of the
hardwood Ftnnd  now occupying the site, the pine
species to be w,oenerated,  the sjte  jndex  of the
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92 22.7
80 34.7
89 18.5
79 34.8
65 21.6

‘if.? 25.6
72 23.6
81 135.6
74 170.2
78 87.2

61 58.7
79 35.2

100 44.3
86 304.8
72 232.5

101 102.2
87 164.9
75 111.3

100 57.0
84 618.4

73 529.0
56 34.9

106 28.5
86 187.1
75 67.1

--._-
3,150.4

- -  Dolla~~slac~~c  - -

104.36 39.70
68 .38 39 .70
96 .07 38.60
66 .78 33 .50
30 .40 38 .80

11.53 38.90
1.17 38.50

55 .60 56.62
12.92 56.42

- 1 4 . 3 2 38.60

-26 .00 38.40
- 1 3 . 2 5 38.40

218.08 38.80
140.90 38.60

91.04 38.70

226 .66 40.60
146.80 40.00
101.09 39.90
341.12 57.92
132.01 57.02

42 .56 57.12
-28 .41 56.32

445 .57 59 .82
150.57 59.22

53 .32 59.72

* Pixm rclti?2ata  Mill.
2 Piww  ellioffii  Engelm.
:I Pixzcs  palwiGs  Mill.
1 Pinus  f aeda  L.

pine species, and the type of regenel-ation.  In-
formation  for formulating the linear program-
ming pl.oblem included the acreage, net present
value, and conversion cost for each class.

Yet p,-esent  value was calculated n:suming  a
pel~pet~~al series  of rotations to insure conipara-
bility among the classes. If only one rotation
\vere considered, the net pesent value  of one
conversion class would not be directly com-
parable to that of another class with a different
rotation length. To further assure  compal‘ability,
classes with artificial regeneration were as-
sumed to be foilowed by a sequence of natural
stands rather than plantations.

The problem is
n

max S p,x,,
i=l

subject to the constraints
O<Xi<_al,i  = l ,n

n
\‘ CiXil  d,

i = l
whel-e  x, is the acreage in the ith opportunity
class to be converted, ai is the amount of land
in the jth class available for type conversion, pi is
the net piwent value  of converting 1 acre of the
ith class to Iline,  c,  is the cost of converting 1 acre
of the ith class to pine, and d is the amount of
funds aGlnble for type conversion. Initially, d
is set at.a level such that.

dsmin{c,a,}
FOI-  this problem, the third type conversion op-
portunity in table 1 has the minimum cial,  which
is $‘i14,100.  Hence. the initial value of d should
be less than this amount; I set it at $1,000.
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The prjorities that resulted (table  2) nre the
::Inie  as those obtained by simple ~*n~;king  of the
ratios of net p1-event  value  to conYer!:ion  cost.

il ITIC~I-e  realistic  n~~~~i~onch  ~\niild  be to include
n~irsel-y  capacity  constraints in the problem.

The total acreage  that could be pl;lnted  to slash
(Pk’i~s  f Il;tif  1  ii  Engelm.)  or lnbloll~ (P.  l~~tdC( L.)
pine is 1.E milljon  acres. If ]jl;illtjJlg  density is

I s I f e e t  o r  GE0 trees  p e r  a c r e .  llie  lot.21 iiumbel
O f :eedljngs  required \vollld he 1.2 l:~ill~o~~.

Let r and f be the masjmum  :icl-e;iger  that  can
be p!nnted  to slash and loblolly  pjnes,  recpec-
timely.  The follon.jng  conctl-aintz  are then :ldded
to the problem,

T Xi <_Sy j = Et9
5x,,  <_f,  k = 19.‘?0.  . . . . ,25

The maxjrn~lm acreage that can be planted to
slash pine will be 33,000 acres; the maximum for

loblolly  pine \\.ill be G’i,OOO  acres. The remajning
\Tariables are unchanged.

\\‘hen the nurser;\’  constraints are added, only
thi.ee clazses \~ith artifjcial regeneration are in
the ~xnking~. (table  3) ; there were eight in table
2. The ma>:imum :iggrepate cost js I-educed by
t\Yo-thirds  as the l.esult  of the imposition of these
nddjtional  restrictions.

Of couI*se, the type  conversion classes could
ha\:e been I.;\nked  under nursery capacity re-
strjctions  \vitliout  parametric Ijnear  program-
ming. Ey totaling the acreages of each class that
utilized  planting. one could determine the point
in the rankings  where nursery capacity would
be eshnu:ted.  All classes below this point that
used planting would be deleted from the list.
Ho\vever,  the problems presented in tables 2 and
3 are simple. Nore  complex problems would be
exceedingly diffjcult,  if not impossible, to solve
in this manner.

This technique should prove useful in two
\Irays.  It lessens the necessity to resolve problems
because of unanticipated changes in constraint
levels, and it increases the capability of linear

Table  2.-Ranking  of  type convcmion  oppo?.tmlities  jol- southem  Alabama

Rank Number
Net present value Cumulative
Convel3ion  cost cost

Thousa7ld
dollars

1 23 7.44 1,705
2 19 5.89 5,006
3 13 5.62 6,725
4 16 5.58 10,874
5 17 3.67 17,470

6 14 3.65 29,236
7 1 2.63 30,137
8 24 2.54 41,217
9 IF 2.53 45,657

10 3 2.49 46,372

11 15 2.35 55,370
12 20 2.32 90,631
13 4 1.73 91,971
14 2 1.72 93,348
15 8 .98 101,026

16 25 .89 105,033
17 5 .78 105,871
18 21 .75 136,087
19 6 .30 137,083
20 9 .23 146,686

21 7 .03 147,595

-- Tholtsand  acres -  -

28.6
85.6
85.5
85.6
85.5

85.6
85.5

272.6
272.6
272.6

272.6
891.0
891.0

0.0 891.0
135.6 891.0

135.6 958.1
135.6 1,487.l
135.6 1,487.l
135.6 1,487.l
305.8 1,487.l

305.8 1,487.l
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9
10
11
12

13
14
15
16

T~IOIIP~M~
tlollors - - Tlioc~~cc~itl  (~CI.CS - -

23 1,705 28.5 28.5
19 3,335 28.5 38.5
13 5,654 67.0 44.3
1G 9,E03 FS.0 102.2

17 1 G,399 67.0 164.9
14 PEJ 64 67.0 304x

1 29,065 67.0 22.7
18 33,506 67.0 ill.3

3 34,220 G7.0 3 8.5
15 43,217 67.0 232.5
4 44,558 F7.0 34.8
2 45,936 0.0 G7.0 34.7

8 47,804 33.0 G7.0 33.0
5 48,642 33.0 67.0 21.6
G 49,638 33.0 67.0 25.6
7 50,547 33.0 67.0 23.6

;)l-og~~amming  as an jn\:estig,ative  and plnnnjng
tool. In addition, using parametric linear pro-
gl-ammjng  to rank projects under multiple con-

Ftmints  has other uses. For example, one can
;I,\ eztjgate  the sensitivity of the rankings to dif-. .
Ec rent il>iClTSt  rates or stumpage  prices.
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