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ABSTRACT. Typically, when different forms of growth and yield models are considered, they are
grouped into convenient discrete classes. As a heuristic device, I chose to use a contrasting perspective,
that all growth and yield models are diameter distribution models that merely differ in regard to which
diameter distribution is employed and how the distribution is projected to future conditions. I describe
different diameter distributions, whether they are the classical continuous diameter distributions, the
implied distributions of whole-stand models, or the discrete diameter distributions of size-class or
individual tree models. There are also intermediates between these types of diameter distributions.
Aggregation vs. disaggregation describes the alternate poles for how diameter distributions can be
projected to future conditions. There are intermediates between these extremes, as well.  There are
several alternatives that vary from the classical paradigms. One alternative is a continuous analog to
stand table projection that employs a “distribution modifying function” to project diameter distributions
in time. One discrete variant of stand table projection is termed “non-naive” size class models, as they
relax one or more of the assumptions of size class models. An “individual tree kernel” model is one
that uses a simple kernel function to distribute probability around an individual tree, rather than
concentrate the probability at the measured diameter, as in typical individual tree models. Other variants
are mentioned. These variants suggest that there is an infinite universe of alternative growth and yield
models, and the classic labels for types of growth and yield models do not embrace these alternatives.

1 INTRODUCTION

In textbooks and proceedings, several authors have sought to distinguish different classes of growth
and yield models (Avery and Burkhart 1994, Munro 1974, Vanclay 1994). In such classifications,
existing growth and yield models are assigned to convenient, discrete classes. I purposely chose an
alternative paradigm--that existing growth and yield models represent individual realizations from an
infinite universe of possible growth and yield models. As such, there are infinitely many intermediate
models between any “classes” of models.

1.1 Viewing All Forest Growth and Yield Models as Diameter Distribution Models. As a heuristic
device, I chose the perspective that all growth and yield models may be viewed as diameter distribution
models. This perspective provides a common thread that can be used to link existing growth and yield
models. Furthermore, the perspective suggests alternatives that arise logically as intermediates between
existing model forms. Although all models may be perceived as diameter distribution models, they may
differ in two ways—the diameter distribution that is chosen and the way the diameter distribution is
projected. Some distributions are continuous, some are discrete. Some are explicit, some are only
implied by the stand-level variables that are predicted. In addition to the choice of a diameter
distribution, a modeler must choose how to project the diameter distribution to future conditions.
Generally, stand-level variables may be projected, and the diameter distribution is disaggregated from
the stand, or parts of the stand (individual trees or size classes) can be projected, and the stand level
variables obtained by aggregation. An equivalent viewpoint would be that all growth and yield models
are population models, and the population is generally described by its size-class distribution. Again,
the models would differ according to the specifics of the distribution, and the method to predict the
future distribution.

There are also examples of systems that integrate models aggregated at different levels (for
example, Daniels and Burkhart 1988, Somers and Nepal 1994, U.S.D.A., Forest Service 1979),



allowing predictions to be made at any of those levels. There are other examples where outputs at a
more aggregated level (whole-stand) are used to constrain predictions at a more disaggregated level
(Zhang et al, 1997, Matney and Belli 1995).

2 ALTERNATIVES FOR DIAMETER DISTRIBUTIONS

Examples for all of the alternative diameter distributions given below are determined for the same plot.
The plot is 0.25 acre, with 54 trees. It is in a naturally-regenerated even-aged loblolly pine (Pinus taeda
L) stand that was 74 years old at the time of measurement.

2.1 Whole-stand Models. Although whole-stand models do not have an explicit diameter distribution,
they may possess an implied diameter distribution that is identified by the variables that are projected.
For example, if a whole stand model consists of a system of equations to predict trees per acre and
volume, the implied diameter distribution is a spike of probability at the tree of average volume (figure
1). If the tree of average volume represents the tree of average value very well, then this should be
sufficient. This would be most likely when dealing with single-species stands with a simple stand
structure (uni-modal, low-variance distribution) where all of the trees produce the same product,
without premiums for larger trees.

If “yield” is in terms of basal area rather than volume, the diameter distribution represents a spike of
probability at quadratic mean diameter. Given trees per acre, basal area per acre, volume per acre, a
local volume equation, and a convenient two-parameter diameter distribution, a diameter distribution
can be generated by recovering the parameters using the second moment, and the volume moment

(figure 2).
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2.2 Classical Continuous Diameter Distribution Models. Classical diameter distribution models
estimate parameters of a chosen diameter distribution either directly from a regression function using
stand-level variables as predictors, or recover the parameters from the sample moments, order statistics,
or percentiles (Bailey and Dell 1973; Hyink and Moser 1983; Burk and Newberry 1984; Zamoch and
Dell 1985; Knoebel and Burkhart 1991)(figure 3). The moments, order statistics and percentiles are all
merely stand-level variables, but they allow estimation of the parameters without developing regression



equations.  Although intricacies of these methods vary, I lump together all classical diameter
distribution models for this discussion.

2.3 Discrete Diameter Distributions. Rather than estimating a parametric distribution, the sample
diameter distribution can be described by predicting the percentiles (Cao and Burkbart 1984; Borders et
al 1987; Borders and Patterson 1990; Droessler and Burk 1994). This can be visualized as a spike of
probability at each percentile (figure 4), or alternatively, it can be viewed as a histogram where the area
of the different bars is equal, but the height and width of the bars differ.

The classic size-class histogram, or stand table projection paradigm, is depicted in figure 5 (Ek,
1974; Buongiorno and Michie 1980). In this case, two-inch diameter classes are used. Diameter
classes could be any width, and need not be of uniform width.
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Figure 6. A spike of probability for each
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Individual tree models (Stage 1973; U.S.D.A. 1979; Belcher et al 1983) are also equivalent to
histograms (figure 6). In this case, the diameter classes are only 0.1 inches wide, the precision to which
trees were measured. Generally, individual tree models include several variables measured on each
tree, not merely diameter. This simply implies a multivariate distribution rather than the univariate
distribution that is described in figure 6.

2.4 An Individual Tree Model with a Continuous Distribution. Rather than placing all the
probability for an individual tree at the measured diameter, the probability could be spread out over a
range of diameter using a convenient kernel distribution (figure 7). In figure 7 we show Epanechnikov
kemnels (Silverman 1986) for 1/6 of the trees for our plot; plotting kernels for all of the trees produces a
confusing graph (the Epanechnikov kernal is simply a parabola, zero outside of + 1/2 the bandwidth,
and scaled to integrate to 1). We may desire to spread out the probability so that the resulting stand-
level diameter distribution would be smooth. This may be sensible as the inherent population diameter
distribution is expected to be smooth, and thus our projected diameter distribution might better reflect
the population. This model structure is termed an “individual tree kernel” model.
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Figure 7. An Epanechnikov kernal for every sixth tree, with a bandwidth of 2 inches.

3 ALTERNATIVES FOR PROJECTING DIAMETER DISTRIBUTIONS

The two main alternatives are: (1) predicting or recovering the diameter distribution given
predictions of stand-level variables (which might include percentiles or order statistics), and (2)
projecting “part” of the diameter distribution, then aggregating those parts to get the complete diameter
distribution.  “Part” will typically be individual trees or size classes. Intermediate procedures exist
where predictions for the future stand-level variables constrain predictions for the future trees or size
classes.  These two alternatives, and possibly intermediate procedures, may be employed for any



choice for the diameter distribution. Leary, Holdaway and Hahn (1979) discussed these alternatives for
a model that was typically implemented as an individual tree model.

3.1 Predicting or recovering the distribution from whole-stand variables. All of the classical whole-
stand and diameter distribution models follow this alternative, regardless of the choice of diameter
distribution and method for estimating the parameters. Details of these standard models will not be
explored here. The critical issue is that the entire distribution is estimated from whole-stand variables
(including moments, percentiles, and order statistics). There are options other than the classical
diameter distribution models and two will be mentioned below, a method analogous to a continuous
variant of stand table projection, and using stand-level variables to estimate a discrete distribution.

3.2 A Continuous Analog to Stand Table Projection. Bailey (1980) showed there are implied
diameter growth functions for some common diameter distributions that will preserve the functional
form of the distribution. This is equivalent to transforming the random variable. These functions only
hold true if mortality was nonexistent or evenly distributed across diameter, two rare occurrences.
Martin et al (1999) explicitly linked a diameter distribution model with the individual tree basal area
growth function of Clutter and Allison (1973), allowing projection of a stand table or an initial Weibull
distribution. Martin et al (1999) used the mortality relationship of Pienaar and Harrison (1988) to assign
mortality to diameter classes. Cao (1997) addressed the survival issue by recovering new Weibull
parameters from moments calculated by numerically-integrating over a non-Weibull p.d.f. that resulted
from incorporating mortality with the initial Weibull p.d.f. Zhang et al (1993) invoked the terminology
of Westoby (1982), by defining a “distribution modifying function” as a function that describes the
change of the distribution. This can be mathematically represented as:
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where f{x;) represents the p.d.f. of diameter at time i, and m(x;) represents the modifying function that
maps the distribution from time 1 to time 2. The modifying function may include stand-level predictor
variables as well as diameter. The modifier function potentially incorporates mortality, and birth (either
vegetative or sexual reproduction) (Cochran and Ellner 1992) as well as growth. If the equation is
conveniently specified, it represents a continuous analog to the classical stand table projection.

3.3 A Simple Example. A simple graphical example follows, where the distribution modifying
function is decomposed into a survival and a growth modifier function. The initial distribution is
described with a simple Epanechnikov kernel (Silverman 1986) (figure 8). The survival relationship is
described in figure 9. Multiplying the initial distribution by the survival function, then adjusting so that
the resulting function is a p.d.f. (i.e. integrates to 1) results in the middle line in figure 10. Note that the
smallest diameter has not changed following consideration of mortality. This is due to the survival
function being greater than zero throughout the range of diameter, as will be true for typical survival
functions. This seems unfortunate, as we would expect minimum diameter to increase as an even-aged
stand ages due to growth as well as mortality of the smallest trees. The diameter growth function is
represented in figure 11. We show the final diameter distribution as well as the initial and intermediate
diameter distribution in figure 10. Probably the easiest way to mentally-picture the effect of the growth
function is as a transformation of the x-axis of the c.d.f. (the curve stays the same, the x-axis is merely
altered). Note that the growth function did increase the minimum diameter, although the survival
function did not.

3.4 The Distribution Modifying Function. In our example, the distribution modifying function is
decomposed into separate survival and growth components (birth is ignored), leading to:
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where s and g represent survival and growth modifier functions.  There are three options for
implementation. It is likely that f{x,) will be a very complicated function that cannot be analytically
integrated. The first option is to endure the potentially awkward function and numerically integrate to
obtain yield. This is not such a burden as it might seem; volume is not available as an analytically-




calculated definite integral in the implementation of standard diameter distribution models, although the
methodology is known (Strub and Burkhart 1975). The form of the function would get more awkward
after each successive growth interval that is projected. The second option would be to devise the
functions such that the form of f{x,) mathematically simplifies to the form of the original f{x;). This
seems unlikely except for overly simplistic distributions and growth and survival functions. The final
option would be to follow Cao’s (1997) procedure to use f{x,) to generate moments which would in turn
be used to recover parameters in the form of the original f{x;). Cao (1997) only did this for
consideration of survival. It could be done after including the effects of both survival and growth. The
additional benefit over Cao’s (1997) procedure that considers only survival, is that there would be much
greater flexibility for the form of the individual tree growth function.
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Figure 8. A hypothetical stand diameter Figure 9. A simple function for individual tree
distribution using an Epanechnikov kernal for survival, plotted within the range of initial
the distribution. diameters represented in figure 8.
=
O
==
> a.
c e
T >
- [T
o

''LDP HWHU DW %UF ' LDP HWHU DW % U

Figure 10. The initial diameter distribution Figure 11. A simple diameter growth function,

(leftmost, thin line), after modifying for plotted within the range of the initial diameters
mortality (middle, dark line), and after represented in figure 8.
modifying for mortality and growth (thick
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3.5 Estimating Discrete Diameter Distributions from Stand-level Variables. Generally, continuous
diameter distributions are used when diameter distributions are estimated from stand-level variables.
However, discrete diameter distributions could also be used. Zhou (1997) [cited in Martin et al (1999)]
generated tree lists (i.e. the diameter distribution for individual tree models) from stand-level data.
Matney and Belli (1995) and Farrar and Matney (1994) used a Weibull distribution to generate a tree
list (i.e. individual tree model, equivalent to each 0.001 quantile), conditioning the tree list to possess
the trees per acre, average diameter, and quadratic mean diameter of the stand-level predictions. Stand
level data could also be used to determine the proportion of trees in each diameter class. Leduc et al [in
press] used an artificial neural network to predict the proportion of trees in each 1-inch-wide diameter



class (figure 12). Percentiles also represent a discrete empirical distribution, and Borders et al (1987)
and Borders and Patterson (1990) predicted them from quadratic mean diameter and age, two stand-
level variables. Droessler and Burk (1994) report unsatisfactory results when they attempted to predict
change in percentiles over time from stands remeasured with temporary plots. Clutter and Jones (1980)
implemented a novel diameter class model where the initial limits (maximum and minimum dbh) of
each diameter class could be specified arbitrarily, and the trees/acre, basal area, average dbh, and
average height of these diameter classes were projected into the future, and thus the future limits of the
diameter classes were irrelevant and undefined. Clutter and Jones (1980) method insured that the
aggregation of the diameter classes was compatible with whole-stand projections.
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Figure 12. Diagram for the basic structure for a neural network used to predict proportions of trees in
one-inch diameter classes. Modified from Leduc et al [in press]

3.6 Projecting “Parts” of the Distribution, then Aggregating . The future diameter distribution for
the stand may be assembled following projection of individual trees or classes of trees, whether the
classes are defined by size or some other criteria. All of the classical individual tree and stand table
projection type models operate in this way. The classes may be uniform-width segments of the



diameter distribution, or an algorithm may be used to agglomerate similar trees (Stage et al 1993).
Alternatives to the classical methods exist. The two alternatives are to either make the discrete
distribution less discrete, or to break-up a continuous distribution.

3.7 Making the Distribution Less Discrete. Both stand table projection models and individual tree
models can be altered so that the distributions are not completely discrete. The assumptions of a stand
table projection model are that the distribution of trees within the diameter class is uniform, and
diameter growth is constant, or related linearly to initial diameter within each diameter class, or
alternatively, that the probability of a tree growing into the next diameter class is constant for all trees in
the diameter class. These assumptions are not reasonable except where the width of the class
approaches zero, at which point the stand table projection model is equivalent to the continuous analog
that was mentioned earlier. The inadequacy of these assumptions can be seen in figure 13. A smooth
line has been drawn, joining the midpoints of the diameter classes. On the left of the mode, a uniform
distribution assumption will underestimate the number of trees that should grow into the next diameter
class (although this will depend somewhat on the data used to estimate the equations). It is obvious that
there are probably many more trees very close to the next diameter class than there are near the previous
diameter class for a diameter class that is to the left of the mode. The reverse is true for diameter
classes to the right of the mode; the standard assumptions will overestimate the number of trees moving
into the next diameter class. This could be particularly troublesome with multiple projection cycles;
predictions will contain too many large trees. The magnitude of this problem will depend upon the
stand structure of the stand in question as well as the stand structures of the data used to estimate
movement probabilities. Haight and Getz (1987) suggested that this outcome of classical stand table
projection type models could easily be overcome, but did not attempt to accomplish that task, and did
not recognize that it was an inevitable result of the classical methodology. To correct for these
problems, either of these assumptions may be relaxed, making projection of trees based upon a more
continuous distribution, although the “accounting” of the model may still utilize very discrete classes.
Relaxing these assumptions involves estimating continuous diameter growth functions, rather than a
constant probability of advancement for each diameter class, or allowing the distribution to be
something other than uniform within a diameter class, or relaxing both the diameter growth and uniform
probability assumptions. I term these alternatives “non-naive” size class models, as they relax one or
more of the naive assumptions of classical stand table projection-type models (“naive” only suggests
simplicity of the assurptions).

Nepal and Somers (1992) relaxed the constant projection probability assumption for stand table
projection and used a truncated Weibull distribution to model density within diameter classes. They
used an individual-tree diameter growth equation to calculate a tentative future stand table, then used
the stand-level predictions for basal area and trees per acre to determine survival and adjust growth,
conditioning the future stand table to possess the trees per acre and basal area predicted by the stand-
level equations. Nepal and Somers (1992) contrasted their method to a method of Pienaar and Harrison
(1988). Pienaar and Harrison’s (1988) algorithm was based on projecting relative tree sizes (tree basal
area divided by average tree basal area) and was invoked by separable functions to condition for stand-
level mortality and growth. Borders and Patterson (1990) compared Pienaar and Harrison’s (1988)
method to an alternative derived from Borders et al (1987) method to predict percentiles as functions of
quadratic mean diameter and age, and an individual-tree model, and found the individual tree model
performed the best for predicting future stand tables for their data.

Cao and Baldwin (1999) combined aspects of Nepal and Somers (1992) method with a least-
squares adjustment to recover the stand-level predictions of trees per acre, average diameter, and basal
area per acre. Cao and Baldwin’s (1999) method is further distinguished from Nepal and Somers
(1992) method as the former method distributes mortality before the future stand attributes are
projected. For their data, Cao and Baldwin’s (1999) fit better than Nepal and Somers (1992).

Tang, et al (1997) developed a method to condition the parameters of individual tree growth and
survival functions to recover stand-level average diameter, quadratic mean diameter, and trees per acre.
Their model could be implemented as a size-class or individual tree model.

The variants on classical stand table projection have conditioned the projected stand tables to
possess the basal area and trees per acre of stand-level prediction equations. This implies that stand
structure does not contribute to the prediction of growth and mortality, after correcting for stand-level
variables. As this hypothesis cannot be correct, an alternative would be to have stand structure



somehow incorporated into the whole-stand projections. In this way, growth and mortality would be
responsive to changes in stand structure.
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Figure 13. The histogram of figure 5, with the midpoints of the diameter classes joined by a smoothing
spline.

It is straightforward to describe a stand table projection algorithm that rejects the uniform
distribution hypothesis, but not the constant growth within a diameter class hypothesis.
Let:
P; = probability of advancing for diameter class i, estimated from many stands.
Implying diameter growth:
Gi = PiW
Where w is the width of the class.
If
f{(x) = probability distribution of trees within class i, in a given stand; potentially a straight (but sloping)
line for simplicity.
Then the proportion of trees advancing from diameter class i is:
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where U is the upper limit of the diameter class.

Similarly, it is simple to describe a stand table projection algorithm that rejects the constant growth
within a diameter class hypothesis , but utilizes a uniform distribution within a diameter class.
Let:
G(x) = some function that describes diameter growth, potentially unique for each diameter class, such
that G(x) is nondeclining within a diameter class.
Then the proportion of trees advancing from diameter class i is:

_8-E

.
.

3

L

where U is the upper limit of the diameter class, and b is defined as b=U-G(b). Given a convenient
formulation for G(x), P; can be solved analytically. It may make sense to implement a stand table
projection-type model even when individual-tree diameter growth functions are available, if, in
application, data will arise from tallies by diameter class.

Another example where a discrete model is made less discrete is the individual tree kernel model
mentioned previously. Implementation can be performed in at least a couple of ways. Mortality for
each kernel can be estimated individually. If mortality is deterministic, mortality will reduce the
number of trees per acre represented by each kernel; thus although each kernel initially represented
equal number of trees per acre, this would change over time. There could be algorithms specified for
joining kernels when one does not represent many trees per acre. The location of the kernel would be
projected using a growth function. The shape and bandwidth of the kernel could remain constant, or it
could change over time. It would be reasonable for the bandwidth to increase over time. Alternatively,
the kernels could be accumulated, projection could be made for stand-level variables, then an algorithm
could be used to distribute growth and mortality to the kernels at each time-step.

3.8 Making a Continuous Distribution Discrete. Although a continuous distribution may be used to
describe a stand, projection may involve projecting pieces of the distribution, then aggregating those
pieces into a new continuous distribution. A distribution defined by a 3-parameter Weibull function has
been broken into ten classes of equal cumulative probability in figure 14. Each piece of the distribution
could be projected individually. This might be rather straightforward for projecting the stand through
one step in time, but it would become problematic if multiple projections are desired. Similar to when
distribution modifying functions were considered, moments could be calculated from the resulting
distribution, allowing parameters of a new, smooth distribution to be recovered. Thus, the algorithm
would be: (1) aggregate to continuous distribution; (2) break the continuous distribution into several
parts; (3) estimate the future conditions of these parts; (4) reaggregate into a new continuous
distribution by recovering the parameters from the moments.

The concept of projecting parts of the distribution, then reconstituting a smooth distribution might
make sense when multi-modal or other complex diameter distributions are considered. The procedure
would allow stand structure to be a determinant of growth, and could thus be a better predictor than
methods that simply use whole-stand variables to predict growth. It probably only makes sense where
the stand structure is more complicated than can be described by a Weibull function.

4 THERE IS A UNIVERSE OF ALTERNATIVE MODELS

It is, perhaps, an unfortunate tendency of human minds to segregate and classify rather than seek
relationships and find common characteristics among different things. Certainly, I classified above,
distinguishing discrete from continuous distributions, distinguishing aggregation from disaggregation,
and so on. However, the models described above only represent a small sample of the infinite universe
of all possible growth and yield models. In the discipline of growth and yield modeling there is great
diversity among the possible approaches. If we strictly choose to classify and pigeonhole, we may lose
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sight of the intermediate models. We may not think of the alternatives. The only purpose of this paper
is to provide an alternative viewpoint to the human desire to classify things.
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Figure 14. The three-parameter Weibull distribution broken into 10 classes of equal cumulative
probability.

The relationships among different model structures are depicted in figure 15. There are processes
that link the broadly-stated classes of models. However, there may be infinite numbers of intermediate
models between those classes. For example, an individual tree model may be equated to a size-class
model with a class-width of 0.1 inch. Class width might be incremented gradually, until all trees are in
one class, and thus become a whole stand model. Similarly there are a few-to-many intermediate model
structures between any two classes depicted in figure 15.

Furthermore, methods to project the model are not detailed in figure 15. Each model, and the
multitude of intermediates, could be projected by different methods. For example, an individual tree
model could be invoked by standard procedures, or the tree list could be disaggregated from future
values of stand-level variables. This provides another dimension, unseen on the figure. Thus, the
alternatives for growth and yield models truly represents a universe of possibilities, with some similar
approaches representing “constellations” and warranting a single label such as “whole stand models”,
while other individuals have few neighbors, and finally, there is the uncharted blackness awaiting
exploration by the intrepid.
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