
CHAPTER 2 

PERSPECTIVES AND METHODS OF SCALING 

JIANGUO WU AND HARBIN LI 

2.1 INTRODUCTION 

Transferring information between or across scales or organizational levels is 
inevitable in both basic research and its applications, a process generally known as 
"scaling" (Wu and Li, Chapter 1). Scaling is the essence of prediction and 
understanding both of which require cross-scale translation of information, and is at 
the core of ecological theory and application (Levin 1992, Levin and Pacala 1997, 
Wu 1999). While the importance of scaling in ecology has been acutely recognized 
in recent decades, how to conduct scaling across heterogeneous ecosystems remains 
a grand challenge (Turner et al. 1989, Wu and Hobbs 2002). 

A number of scaling approaches and methods have been developed and applied 
in different disciplines ranging from physics, engineering, biology, to social 
sciences. Two general scaling approaches can be distinguished: similarity-based 
scaling and dynamic model-based scaling methods (Bloschl and Sivapalan 1995). 
Similarity-based scaling methods are rooted in the concepts and principles of 
similarity and self-similarity and often characterized by relatively simple 
mathematical or statistical scaling functions, even though the underlying ecological 
processes of a phenomenon may be extremely complex. In contrast, dynamic model- 
based scaling methods use deterministic or stochastic models to simulate the 
processes of interest, and to transfer information across scales by either modifling 
the parameters and input variables of the same model or developing multiple-scaled 
models. In this case, information transfer between different scales is accomplished 
through manipulating the inputs, outputs, and formulations of dynamic models. In 
both approaches, it is important to properly identify scaling thresholds at which 
scaling relations often change abruptly, reflecting hndamental shifts in underlying 
processes or controlling factors and defining the domains of applicability of specific 
scaling methods. 

While the previous chapter (Wu and Li, Chapter 1) discussed various concepts of 
scale and scaling, in this chapter we focus on the major characteristics of the two 
scaling approaches and several more specific upscaling and downscaling methods 
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within each approach. The purpose of this chapter is not to provide a recipe for 
scaling. Rather, we shall review scaling perspectives and methods in different 
disciplines, and provide a synthesis based on a common conceptual framework. By 
so doing, we expect that a more comprehensive and cohesive understanding of 
ecological scaling will emerge. 

2.2 SIMILARITY-BASED SCALING METHODS 

2.2.1 Concepts of Similarity 

The concepts of similarity traditionally have been important in scaling-related 
studies. In general, similarity exists between two systems whenever they share some 
properties that can be related across the systems by a simple conversion factor 
(Bloschl and Sivapalan 1995). LaBarbera (1989) summarized three types of 
similarity concepts applied in body size-oriented studies: geometric, physical, and 
functional similarities (also see Gunther 1975). Geometric similarity is characterized 
by the constancy in shape with changing size. In other words, geometric similarity 
assumes that "geometry and shape are size-independent properties" (Niklas 1994). 

2 For example, for different sized objects of the same shape and geometry, S = L , 
and S = v*", where L, S, and V are the linear dimension, surface area, and volume 
of the objects. Physical similarity is defined based on the constancy of the ratios of 
different forces (also called dynamic similarity; see Bloschl and Sivapalanl995). For 
example, two systems are said to have hydrodynamic similarity if they have the 
same Reynolds number (i.e., the ratio of inertial to viscous forces). Barenblatt 
(1 996) stated that the concept of physical similarity is a natural generalization of that 
of geometric similarity in that two similar triangles differ only in the numerical 
values of side lengths, whereas two similar physical phenomena differ only in the 
numerical values of the dimensional governing parameters. Functional similarity 
refers to the constancy in the changes in functional variables over a range of system 
sizes. For example, animal metabolic rates (R) change with body size or mass (M) 

b following a power law (i.e., R a M ). If the primary production of an ecosystem 
(P) changes with the size of the ecosystem (A)  in a similar fashion (i.e., P = A ~ ) ,  
then the ecosystem may be said to have functional similarity. 

In recent decades, the concept of self-similarity has become a cornerstone of 
similarity-based studies. It refers to the phenomenon that the whole is composed of 
smaller parts that resemble the whole itself or that patterns remain similar at 
different scales. Self-similarity is the key idea in fractal geometry (Mandelbrot 1982, 
Hastings and Sugihara 1993), and is considered to be the unifying concept 
underlying fractals, chaos, and power laws (Schroeder 1991). While admitting that 
the terms, fractal and multifractal, still lack an agreed mathematical definition, 
Mandelbrot (1999) offered an informal definition of fractal geometry as "the 
systematic study of certain very irregular shapes, in either mathematics or nature, 
wherein each small part is very much like a reduced size image of the whole." Such 
irregular shapes, or fractals, exhibit properties of self-similarity which entails scale- 
invariance (i.e., patterns or relationships remain unchanged over a range of scales). 
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Commonly cited examples of fractals include coastlines, clouds, snowflakes, 
branching trees, and vegetation patches. However, not all self-similar objects are 
fractals because self-similarity is also found in Euclidean geometry. 

Simple fractals exhibit scale-invariant patterns that can be characterized with 
only one scaling exponent, which is often interpreted as implying one single 
generating process. However, many fractal-like structures in nature are generated by 
a number of generating processes that operate at different scales. These are called 
generalized fractals, or multifractals, which are characterized by a spectrum of 
fractal dimensions that vary with scale. It has been suggested that additive processes 
tend to create monofractals (simple fractals), whereas multiplicative random 
processes generate multifractal structures (Stanley and Meakin 1988, Schroeder 
1991). Multifractals have been used to describe the spatial distribution of people and 
minerals, energy dissipation in turbulence, and many other patterns and processes in 
nature. It is now widely recognized that many if not most fractal patterns and 
processes in nature show scale-invariance only over a limited range of scales. 
Hastings and Sugihara (1993) suggested that linear regression methods be used to 
distinguish between patterns with one scaling region (a single power law) and those 
with multiple scaling regions (separate power laws over separate regions). These 
authors asserted that multiscaling is detected if the slope of the regression line 
changes significantly over adjacent regions. 

2.2.2 Dimensional Analysis and Similarity Analysis 

The concepts of similarity are the foundation of dimensional analysis (Bloschl and 
Sivapalan 1995), and have long been used in engineering and physical sciences. 
Barenblatt (1996) indicated that the main idea behind dimensional analysis is that 
"physical laws do not depend on arbitrarily chosen basic units of measurement," and 
thus the functions expressing physical laws must possess some fundamental property 
(mathematically termed generalized homogeneity or symmetry) that allows the 
number of arguments in these functions to be reduced. Dimensional analysis aims to 
produce dimensionless ratio-based equations that can be applied at different scales 
for a phenomenon under study. In practice, dimensional analysis only applies in the 
framework of Euclidean geometry and Newtonian dynamics (Scheurer et al. 2001). 
Dimensional techniques have long been used to derive similarity relationships, 
establish scaling laws, reduce data volume, and help elucidate processes and 
mechanisms in physical and biological sciences (Gunther 1975, Bloschl and 
Sivapalan 1995). Similarity analysis is similar to dimensional analysis in that it is 
also a simplification procedure to replace dimensional quantities required for 
describing a phenomenon with fewer dimensionless quantities; but unlike 
dimensional analysis, it requires the governing equations of the phenomenon to be 
known (Bloschl and Sivapalan 1995). 

Examples of similarity analysis are abundant in physical sciences. For example, 
similarity analysis in soil physics and hydrology started in the 1950s with the 
concept of Miller-Miller similitude, an intuitive depiction of structural similarities in 
porous media at fine spatial scales (Miller and Miller 1956). Miller-similar porous 
media have microscopic structures that look similar in the same way as triangles in 
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Euclidean geometry (Sposito 1998). Similarity analysis, then, involves the 
derivation of scale factors for soil-water transport coefficients on the basis of the 
fine-scale similar-media concept. Later studies extended the concept of the Miller- 
Miller similitude from microscopic to macroscopic scales using the idea of 
functional normalization (related to functional similarity) rather than dimensional 
techniques (Haverkamp et al. 1998). In recent decades, fractal and multifractal 
models of soil structure have been increasingly used in similarity analysis of 
hydrological processes and beyond. As Sposito (1998) noted, "fractal geometry has 
become the signature approach to both spatial-scale invariance and temporal-scale 
invariance, as epitomized by self-similarity in the patterns of hydrologic and other 
geophysical processes." 

One of the most successfbl examples of using similarity analysis to deal with 
complex physical processes is Monin-Obukhov similarity theory. Atmospheric 
boundary-layer flows, though mostly turbulent, can be viewed as being dynamically 
similar, such that the concepts of similarity can provide a powerful framework for 
analyzing empirical data and parameterizing models to represent these complex 
processes. In particular, Monin-Obukhov theory assumes that surface layers with the 
same ratio of the aerodynamic roughness length (zo) to the Obukhov length (L) are 
dynamically similar, with zdL being considered as a dimensionless similarity 
parameter. In other words, the theory is based on the assumption of complete 
similarity of fluxes in terms of Reynolds number (Barenblatt 1996). The 
development of Monin-Obukhov theory follows the general procedures of similarity 
analysis: (1) identifying the atmospheric processes that conform the dynamic 
similarity principle, (2) characterizing these processes with dimensionless similarity 
parameters (e.g., Reynolds number), (3) determining a set of scaling parameters 
(e.g., scaling wind velocity, scaling temperature, scaling humidity) and non- 
dimensionalized dependent and independent variables, and (4) deriving a set of 
similarity laws that are valid over a broad range of scales (Barenblatt 1996). By so 
doing, Monin-Obukhov theory relates turbulent fluxes in the surface layer to mean 
vertical gradients of wind, temperature, and specific humidity (Wu 1990). 

As an important part of similarity analysis, renormalization group methods 
(Wilson 1975) have been used for studying scaling behavior associated with critical 
phenomena and phase transitions in physical sciences, including turbulence, flows in 
porous media, fracture mechanics, flame propagation, atmospheric and oceanic 
processes (Binney et al. 1993, Barenblatt 1996). The general idea of renormalization 
groups is to simplify mathematically complex models that contain much fine-scale 
detail into simpler models and to develop scaling laws using similarity principles 
and techniques. The simpler models (or equations) consist only of essential 
information of the phenomenon under study, and are able to describe and predict 
coarse-scale patterns with explicit scaling relations. Renormalization group methods 
represent a fundamental concept and powerful technique in theoretical physics 
(Barenblatt 1996), which "make rigorous the scaling process through the derivation 
of equations for blocks of cells in terms of the units that make them up" (Levin and 
Pacala 1997). Critical phenomena and phase transitions are common in ecology, 
particularly with spatial problems (Gardner et al. 1987, Milne 1998), but only until 
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recently have renormalization group methods been applied in ecological studies 
(e.g., Levin and Pacala 1997, Milne 1 998). 

Gunther (1975) pointed out that "Structures and functions of all living beings, 
irrespective of their size, can be studied by means of some basic physical methods, 
viz., dimensional analysis and theories of similarity." Although it is unlikely that all 
structures and hnctions of the biological world (even at the organism level) can be 
effectively studied by using dimensional analysis and similarity analysis alone, there 
is little doubt that they will continue to play an important role in biological and 
ecological scaling. A great number of allometric studies in biology and ecology have 
fwrther demonstrated the power and elegance of similarity-based methods. However, 
the applicability and accuracy of these methods may depend on the levels of 
biological organization and the variability of processes with scale. In the following, 
we turn our attention to some of the major issues in allometric scaling. 

2.2.3 Biological Allometry 

Gould (1966) defined allometry as "the study of size and its consequences." 
Similarly, Niklas (1994) described allometry as "the study of size-correlated 
variations in organic form and process." Among other definitions of allometry is any 
"departure from geometric similarity" (LaBarbera 1989). For several decades 
allometry has focused primarily on the body size (or mass) of organisms as the 
fundamental variable (Calder 1983, Peters 1983, Schmidt-Nielsen 1984). Niklas 
(1994) summarized three meanings of allometry: (1) a relationship between the 
growth of a part of an organism and the growth of the whole organism (or some part 
of it), (2) a relationship between organic size and biological form and process, and 
(3) a size-correlated relationship deviating from geometric similarity that is 
exhibited by objects of varying sizes with the same geometry and shape. Brown et 
al. (2000) noted that allometric studies in biology have been carried out at three 
levels of biological organizations: within individual organisms (e.g., animal 
circulatory networks and tree branching architecture), among individual organisms 
of different sizes (e.g., body-size related variations in biological pattern and 
process), and within populations or communities (e.g., allometric scaling of 
population density and community biomass). 

Allometric scaling is rooted in the concepts of similarity and, as in physical 
sciences, allometric relations in biology usually take the form of a power law: 

or, logy = logyo + b ZogM (2-2) 

where Y is some biological variable, Yo is a normalization (or scaling) constant, M is 
some size-related variable (usually body mass), and b is the scaling exponent. 

In Equation 2.1, if b = 1, the relationship becomes linear, and is called isometric 
scaling; if b # 1, then the relationship is either geometric scaling or allometric 
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scaling (including fractal scaling). Geometric (or Euclidean) scaling is based on 
complete similarity, whereas allometric scaling is based on incomplete similarity or 
self-similarity (Barenblatt 1996, Schneider 2001a). For example, based on the 
geometric similarity of Euclidean objects we can analytically derive the following 
relationships among volume (V), area (A), the length dimension (I), and mass (M): 

A = 12, V = 13, M = V, 1 = M1I3, and A = M2I3. These simple geometric 
scaling rules mean that, if objects of different sizes are completely similar, their liner 
dimensions and surface areas should be proportional to the 113 and 213 powers of 
their mass (assuming a constant density). In other words, if b = 1/3, Equation 2.1 
suggests that a property of an object (Y) is dependent on the length dimension of the 
object (M); if b = 2/3, then Equation 2.1 suggests that Y is dependent on the surface 
area of the object. However, Brown et al. (2000, 2002), among others, argued that 
organisms do not seem to follow such simple geometric scaling rules; rather, they 
commonly exhibit "quarter-power scaling" relationships - i.e., the scaling exponent 
takes the value of simple multiples of 114. For example, b = 3/4 for the whole- 
organism metabolic rates of a variety of animals ranging from mice to elephants; b = 

1/4 for the heart rates of animals; b = -1/4 for the life span of animal species; b = 

3/8 for the radius of the aorta of animals and the trunks of trees; and b = -3/4 for the 
population density of animals (Brown et al. 2000, Schmid et al. 2000, Carbone and 
Gittleman 2002). While these scaling relations are general, variability can be 
substantial even for the same biological process. For instance, LaBarbera (1989) 
reported that, for scaling of home range area with body size of terrestrial mammals, 
b = 1.18 for herbivores, b = 1.51 for carnivores, b = 0.97 for omnivores, and b = 
0.74, 1.39, or 1.65 for all mammals depending on data sets used for calculation. 

One of the best-known examples of allometric scaling in plant ecology is the 
self-thinning law in plants. In even-aged plant communities, the average biomass of 
individual plants (W) scales with plant density (D) following a power law: 
w = c ~ - 3 / 2  , or B = cD-ll2, where c is a scaling constant and B (=WD) is the stand 
biomass density. This means that plant population density scales with plant weight 
with a scaling exponent of -213 (i.e., D = w - ~ ~ ~  ) rather than -314 as in animals. 
This scaling relation was obtained from regression analysis based on empirical data 
as well as analytical studies based on geometric similarity - the so-called the 
"surface area law" (S  = v2I3, where V is the volume and S is the surface area; 
Niklas 1994). While this biomass-density relation has been held as a "law" for 
decades, recent studies have found little empirical evidence to support its 
universality and consistency (Weller 1987, Zeide 1987, Lonsdale 1990). In 
particular, the scaling exponent is not a constant, but rather a variable that is 
influenced by the shade tolerance of plants under study and taxonomic groups of 
choice. Zeide (1987) concluded that "the law is neither precise nor accurate," and 
Lonsdale (1990) stated that, in the log-log plot of stand biomass vs. plant density, 
"straight lines are the exception rather than the rule." 

Enquist et al. (1998) showed that whole-plant resource use scales as w3I4 and 
that, accordingly, the scaling exponent for the biomass-density relation or the self- 



thinning law is -314 (i.e., D = wJI4), not -213 as previously reported. Thus, they 
concluded that plants do not differ from animals in terms of scaling of population 
density with respect to body mass, confirming the prediction of their general 
mechanistic model of resource use in fractal-like branching networks (West et al. 
1997). This model, however, has met an increasing number of criticisms claiming 
that it is mathematically flawed and empirically unwarranted (e.g., Magnani 1999, 
Bokma 2004, Cyr and Walker 2004, Kozlowski and Konarzewski 2004). 
Nevertheless, allometric scaling, as a general approach, remains useful, and its rule 
in spatial scaling is discussed below. 

2.2.4 Spatial Allometry 

While sharing common features of similarity-based scaling methods, biological 
allometry has focused primarily on body size. Most of the allometric equations do 
not directly address the problem of spatial scaling. However, allometry as a general 
method can be applied to spatial scaling when the independent variable is spatial 
scale instead of body mass. Such studies have been termed spatial allometry 
(Schneider 2001a, b). In this case, the similarity principles pertain to the spatially 
extended systems (e.g., habitats, landscapes) rather than the individual organisms. A 
general spatial allometric scaling relation can be written as follows: 

or, Q(S) = ksP , with k = Q(SO)SO -B 
(2.4) 

where Q(S) and Q(Sa) are the values of an ecological variable Q at spatial scales of 
SO and S, respectively, and P is the scaling exponent. 

In Equations 2.3 and 2.4, S and So may be expressed as extent or grain size. If S 
is extent and So is grain size, then the ratio, S/So, defines the spatial (or temporal) 
scope (sensu Schneider 2001a), which is useful for comparing scaling studies with 
different systems. As with Equation 2.1, Equation 2.3 indicates isometric scaling 
when p = 1, and geometric (Euclidean) or fractal scaling when P # 1. Schneider 
(2001b) pointed out that geometric scaling results when P is "an integer or ratio of 
integers," whereas fractal scaling is indicated by a value of P that is "not an 
integer." In practice, however, it is not a trivial matter to distinguish between a 
"ratio of integers" and a "fractal" dimension. Thus, inferring the nature of similarity 
based merely on regression results, as often done in biological allometry, is not 
warranted. 

Some allometric relations at the levels of populations and communities may be 
directly related to spatial scaling. For example, if population density scales with 
body mass as D = DoM4.", one can derive a scaling relation between the total 
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number of animals (N) and habitat area (A): N = D ~ A M ~ . "  or between the total 

biomass (B) of the animal species and habitat area: B = DAM = DOAM 0.2s. If home 

range scales with body mass as H = M b ,  then population density can be directly 
related to the size of home range: D  = H M - ( ~ . " + ~ )  . The best known example of 
spatial allometry, however, may well be the species-area relationship (SAR). SAR 
is commonly described by a power-law function: S = CA', where c is a constant 
influenced by the effect of geographical variations on S ,  and z is the scaling 
exponent with a value close to 0.25. SAR has been regarded as "ecology's most 
general, yet protean pattern" (Lomolino 2000) and one of the few widely accepted 
laws in ecology (Schoener et al. 2001). 

Some recent studies suggested that the species-area relationship is an example of 
scale invariance that reflects self-similarity in species abundance and distribution 
(e.g., Harte et al. 1999, Kunin 1999). However, many others have indicated that the 
value of the scaling exponent of SAR may vary widely and that the power-law 
scaling only holds over a finite range of spatial scales in real landscapes (Crawley 
and Harral 2001, Schoener et al. 2001). While scale invariant pattern is often 
believed to imply a single underlying process, the species-area relationship may 
have multiple scaling domains if examined over many orders of magnitude in space. 
This observation favors the explanation that different factors determine species 
diversity at different ranges of scales (Shrnida and Wilson 1985, Crawley and Harral 
2001, Whittaker et al. 200 1). For example, Lomolino (2000) argued that, for isolated 
ecosystems, SAR has three fundamentally different realms: (1) erratic changes 
influenced by idiosyncratic difference among islands and random catastrophic 
disturbance events for small islands, (2) a monotonic deterministic pattern 
determined by island area and associated ecological factors for intermediate-sized 
islands, and (3) again a monotonically increasing pattern for islands large enough for 
in situ speciation. Nevertheless, as with the self-thinning law, the debate and 
controversies on the universality, scale invariance, and ecological interpretation of 
SAR do not necessarily invalidate the use of the allometric scaling approach; it 
actually demonstrates its usefulness as a research tool. 

In landscape geomorphology, it has long been noted that landform attributes 
exhibit allometric relationships (Woldenberg 1969, Bull 1975, Church and Mark 
1980). For example, Hood (2002) identified several allometric scaling relations 
between slough attributes (e.g., area, outlet width, perimeter, length) for rivers in the 
Pacific Northwest of the United States, and showed that detrital insect flotsam 
density was also allometrically related to slough perimeter. In a recent study of the 
landscape dynamics of over 640 peatland bog pools in northern Scotland, Belyea 
and Lancaster (2002) found that the pools became deeper and more convoluted in 
shape with increasing size, and that the relationships between the area, depth, width, 
and length of the bog pools showed allometric (rather than geometric) scaling. 
Schneider (2001a,b) provided a number of examples of spatial allometry for lake 
ecosystems and aquatic mesocosms in terms of the geometric attributes of the 
systems (e.g., the volume, area, perimeter, and depth of lakes or mesocosms) and 
biological properties (e.g., fish catch, primary production). In recent decades, the 
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allometric study of landform, or landscape allometty, has been elevated to a new 
level of enthusiasm and insight by applying the concepts of fractals and self- 
organization (Mandelbrot 1982, Turcotte 1995, Rodriguez-Iturbe and Rinaldo 1997, 
Phillips 1999, Schneider 200 1 a, b). 

In landscape ecology, there have been many examples of spatial patterns 
exhibiting allometric or fractal scaling relations (e.g., Milne 1991, Nikora et al. 
1999, Wu 2004). Although some authors attempt to associate power scaling 
relations to underlying "universal" laws or scale invariance theories, such scaling 
relations usually only hold for limited ranges of scale (Milne 1991, Berntson and 
Stoll 1997, Wu 2004). Without resorting to any such grandiose assumptions, 
however, spatial allometry can still be used as a valuable empirical scaling method 
to summarize and extrapolate observed patterns over a range of scales, and to 
provide clues about the underlying processes, using a "scalogram approach" (Wu 
2004). 

2.3 DYNAMIC MODEL-BASED SCALING METHODS 

2.3.1 Some Concepts of Scaling with Dynamic Models 

In contrast with similarity-based scaling methods that deal with complex phenomena 
in a relatively simple manner, dynamic model-based scaling methods focus more on 
the processes and mechanisms of the phenomena under study. They may 
incorporate, but do not rely on, similarity concepts in theory and dimensional 
techniques in practice. Dynamic models are composed of state variables, rate 
variables, input variables, output variables, parameters, and constants. Parameters 
and constants help define rate variables and relate input and output variables to state 
variables. Because these terms are defined differently in the literature, some 
clarifications are needed here to avoid confusion. Following Bierkens et al. (2000), 
parameters may change in space, but not in time; constants are the only part of a 
model that does not change in space and time (i.e., scale-invariant); and all other 
model components may change in both space and time. Dynamic models can be 
implemented in mathematically explicit forms (e.g., differential or difference 
equations) or mathematically implicit forms (e.g., mathematical relation-based or 
rule-based simulation algorithms written in computer languages). 

To illustrate different scaling methods clearly and precisely, let's assume that a 
dynamic model at a local scale s, is: 

where y(s,), v, 8, and i are the output variables, state variables, parameters, and 

input variables at scale s, , respectively. 
Also, let's assume that a model can be developed at a broader scale s2 as: 
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where Y(s2), V,  @, and I are the output variables, state variables, parameters, and 

input variables at scale s2, respectively. 
Note that all the model arguments can be vectors. Then, transferring information 

from sl to s2 usually involves one or more of the following transformations: v t?, 

V,  -0, iwI,  and f (v,O,i) w F ( V , O , I ) ,  depending on how the model arguments 
and relationships at the two scales are linked (Bloschl and Sivapalan 1995, Wu 
1999, Bierkens et al. 2000). Thus, the transfer of information between scales using 
dynamic models is done through rescaling or other kinds of alterations of inputs, 
parameters, state variables, and model conceptualizations. 

Scaling with dynamic models typically consists of two major steps. For 
upscaling, the two steps are characterizing heterogeneity and aggregating 
information (Figure 2.1). First, characterizing spatial heterogeneity involves the 
classification and quantification of spatial patterns (e.g., the number, size, and 
spatial configuration of different types of patches in a landscape), which influence 
model inputs and parameters. Spatial heterogeneity can be characterized either in a 
spatially explicit way (i.e., in the form of maps) or in statistical terms (e.g., statistical 
moments, probability density functions, or pattern indices). In cases where data do 
not cover the entire study area, interpolation is often needed. Many spatial 
interpolation methods exist (Lam 1983, Goovaerts 1997), and geostatistical methods 
such as kriging are particularly useful. In all these cases, geographic information 
systems (GIs) and remote sensing have proven extremely useful (Quattrochi and 
Goodchild 1997, Marceau 1999, Hay et al. 2001). 

Scale 2 
F(V,e,U, average or aggregated values 

one broad- 
scale value 

A 

aggregating , , , ,A\[ , , , disaggregating 
information information 

4 il 
p 3 .- spatial pattern or probability density functions (moments) 

e- - 
m I l l i l l i t l l l l l l l i l l  I t  iues " 

characterizing singling out 
heterogeneity 

Scale 1 

f(v,$u) \/ po~nt or plot-level values 
one scaie fine- value 

Figure 2.1. Upscaling and downscaling as a two-step process when a dynamic model-based 
approach is used (modijiedfiom Bloschl and Sivapalan 1995). 
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Second, aggregating information is to incorporate the quantitative description of 
spatial heterogeneity into local models to obtain predictions at a broader scale (or 
the target scale), be it a larger grain (coarse-graining) or a larger extent 
(extrapolation). Again, a variety of methods may be used in this step depending on 
what to be aggregated and how, as discussed below. In general, aggregating state 
variables and inputs can be readily done following such first principles as the laws 
of mass and energy conservation, but aggregating model parameters can be quite 
challenging (Bloschl and Sivapalan 1995). 

For downscaling, the two steps are disaggregating information and singling out 
(Figure 2.1). Disaggregating coarse-grained information is to derive the detailed 
pattern within a spatial domain (fine-graining) with auxiliary data. Because of the 
lack of within-grain (or within-pixel) information, this often requires stochastic or 
probabilistic methods. Singling out is simply to find the location of the 
disaggregated pattern that corresponds to the site of interest, which is usually a 
trivial matter. Note that scaling relations (power laws) derived from similarity-based 
methods are supposed to work for both scaling up and scaling down. In contrast, 
scaling with dynamic models employs both deterministic and stochastic 
formulations, which may differ significantly for upscaling versus downscaling. In 
the following, we discuss several dynamic model-based scaling methods in detail. 

2.3.2 Upscaling Methods 

The literature on upscaling methods is both abundant and confusing because of the 
diversity in disciplines and approaches as well as the idiosyncrasy in terminologies 
and traditions. From a landscape modeling perspective, King (1991) distinguished 
four extrapolation methods: extrapolation by lumping, direct extrapolation, 
extrapolation by expected value, and extrapolation by explicit integration. Bloschl 
and Sivapalan (1995), Becker and Braun (1999), and Bierkens et al. (2000) 
discussed a number of scaling methods in the context of hydrological modeling and 
soil physics. Based on these and other studies, we compare and contrast several 
model-oriented upscaling methods. We focus more on the second step of upscaling - 
aggregating information. It must be emphasized, however, that adequately 
characterizing spatial heterogeneity is a crucial and necessary first step for upscaling 
with dynamic models, because the accuracy in representing spatial pattern may not 
only affect the accuracy of scaling results (see Li and Wu, Chapter 3), but also the 
model conceptualization and simulation scheme. 

2.3.2.1. Extrapolation by lumping 

One of the simplest ways to transfer information between two scales is to obtain the 
target-scale estimate as the output of the local-scale model with the mean values of 
parameters and inputs averaged over the study area - a method called extrapolation 
by lumping (King 1991) or simple averaging (Bierkens et al. 2000). If the local 
model is deterministic, only one model run is needed. This method can be used for 
extrapolation with increasing extent as well as for coarse-graining with increasing 



26 J. WU AND H. LI 

grain size (see Wu and Li, Chapter 1). In this case, the local model f () is assumed 
to remain valid at the target scale. That is, f () = F ( ) .  The method also assumes that 
f () is linear such that changes in output variables are proportional to changes in 
input variables and parameters. In addition, horizontal interactions and feedbacks are 
negligible or at steady state. Under these assumptions, the treatment of the spatial 
heterogeneity of the study system is extremely simplistic: spatial variability is all 
squeezed into the averages of model arguments. Mathematically, the lumping 
method can be expressed as: 

where <variable> denotes the average of a variable, and all other terms are the same 
as before. 

Equation 2.7 holds when y and Y represent a density measure (e.g., population 
density, flux density, carbon storage per unit area). If y and Y represent some 
cumulative or additive variable (e.g., population size, total flux, biomass), then the 
target-scale estimate becomes the product of the local-scale average multiplied by 
the total area, i.e.: 

where A is the size of the target grain size in the case of coarse-graining, or the 
spatial extent in the case of extrapolation. 

Thus, extrapolation by lumping uses the same local model at the target scale, 
with highly aggregated values of parameters and inputs. Simply put, lumping is 
about averaging over space. If grain elements are of the same size, arithmetic 
averaging is usually used. But if grain elements are of different sizes, area-weighted 
averaging should be used, instead. The local model is defined at the scale of a grain 
element or patch in the case of increasing extent, and at the size of the smaller grain 
element whose aggregates form the larger grain element in the case of coarse- 
graining. As a consequence of the oversimplifying assumptions, extrapolation by 
lumping is expected to produce large scaling errors when the model is nonlinear, 
when the local model formulation is no longer applicable at the target scale, or when 
horizontal interactions between grain elements (or patches) are strong and 
asymmetric (King 1991, Bierkens et al. 2000). For example, if the target scale is a 
landscape consisting of a number of different interacting ecosystems, the simple 
lumping method is more than likely to fail. 

2.3.2.2 Extrapolation by efiective parameters 

Similar to the simple lumping method, extrapolation by effective parameters 
assumes that the local model applies to the target scale such that upscaling can be 
done by manipulating its parameters and inputs. However, instead of simply 
averaging parameters and inputs over space, the method uses "effective" (also called 
"equivalent" or "representative") parameters and inputs to produce the target scale 



estimates (L'homme et al. 1994, Bloschl and Sivapalan 1995, Bierkens et al. 2000). 
That is, the estimated value of a variable at the target scale, Y(sZ), is the output of 
the local model with a set of effective parameters and inputs: 

where 0, and I ,  are the effective or representative parameters and inputs. 
The effective parameter approach has been widely used in soil physics, 

hydrology, and micrometeorology (L'hornme et al. 1996, Bierkens et al. 2000). A 
prototypical example of using this method is to find the effective hydraulic 
conductivity for models of groundwater or soil water dynamics (Bloschl and 
Sivapalan 1995). For uniform steady saturated flow through a soil block that is made 
up of smaller blocks of different hydraulic conductivities, the effective conductivity 
equals the arithmetic mean of the small-block conductivities when they are arranged 
in parallel, and the harmonic mean when the small blocks of soil are arranged in 
series. For unsaturated flow, infiltration, and overland flow, such general effective 
conductivity does not exists, and a number of factors other than the porous medium 
itself may affect hydraulic conductivity, even though the geometric mean is found to 
be "effective" in some situations. Micrometeorologists have long used the "flux 
matching" technique in modeling fluxes over heterogeneous landscapes (L'homme 
et al. 1996, Wood 1998). That is, to upscale a certain surface flux over a patchy 
geographic area, one assumes that the plot-scale model, f (O(x),i(x,t)) , still holds at 
the landscape scale, and then seeks the representative parameters O(x) and inputs 
I(x,t) that produce the same estimated landscape-scale flux as the summation of 
fluxes predicted by the local model using heterogeneous parameters and inputs, i.e., 

where A is the area of a region over which the integration is performed. 
Thus, extrapolation by effective parameters essentially is to run "micro-scale 

equations" using b'macro-scale parameters" whose values are assigned to points 
within the study area to assure that the "uniform parameter field" produces the same 
model output as the "heterogeneous parameter field" (Bl6schl and Sivapalan 1995). 
The key to this method is to successfully derive a set of representative parameters 
and inputs for scale s2 from parameters and inputs at scale sl through synoptic 
descriptions of the fine-scale heterogeneous patterns. This is relatively easy for 
linear models where the representative parameters and inputs can be found by 
simply averaging over space. In this case, it becomes the simple lumping method 
again. For nonlinear models, however, finding effective parameters can be a difficult 
task. The values of representative parameters and inputs are determined by several 
factors: the values of parameters and inputs of scale sl, the detailed formulation of 
the local model, and the difference between the two scales as measured by their 
ratio, s2/sl (Bierkens et al. 2000). Effective parameters are rarely unique, and fine- 
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scale parameters used to estimate the target-scale effective parameters are 
themselves mostly approximations (Bierkens et al. 2000). A number of methods 
have been used for deriving representative parameters and inputs, including 
analytical approaches, Monte Carlo simulations, inverse modeling, and direct 
measurements (Blaschl and Sivapalan 1995, Dolman and Blyth 1997, Bierkens 
2000). In general, the accuracy of extrapolation by effective parameters is dependent 
upon whether the local model is valid at the target scale and whether representative 
parameters and inputs can be found that adequately account for the spatial 
heterogeneity of the system under study. 

2.3.2.3 Direct extrapolation 

Different from the lumping and effective parameter methods, direct extrapolation 
(sensu King 1991) does not assume that the local model apply at the target scale. 
Instead of averaging parameters and inputs before running the model as in the 
lumping method, direct extrapolation obtains the target-scale estimates by first 
running the local model for each grain element (or patch) of the system with 
geospatially corresponding parameters and inputs, and then averaging (or summing 
up) the model outputs for all the grain elements. Mathematically, the relationship 
between the two scales can be described as: 

N N 
or, Y ( s 2 )  = X y(slIk = kzlf ( ~ , @ , i ) ~  (2.12) 

k= l  

where N is the total number of areal units at scale sl. Again, Equation 2.11 is 
applicable when y and Y represent a density measure, while Equation 2.12 is used if 
y and Y represent an additive variable. 

In direct extrapolation, therefore, spatial heterogeneity is treated explicitly in 
terms of model parameters and inputs. This spatial explicitness can be retained in the 
target-scale estimates as well because the model outputs can also be presented in the 
form of maps in the case of coarse-graining (see Wu and Li, Chapter 1). More 
importantly, if the local model is nonlinear, running it first with spatial data and then 
averaging the outputs can reduce the errors due to model nonlinearity that are 
associated with the lumping method. If the local model is linear (rarely true in 
reality), however, direct extrapolation should produce the same results as the simple 
lumping method, but with higher demands for data preparation and computation. 

Direct extrapolation is conceptually intuitive and technically straightforward, and 
it has been widely used in ecology, hydrology, and soil science. Examples include 
numerous spatially explicit or spatially distributed ecosystem and landscape models. 
Nevertheless, because it requires running the local model at all grain elements, direct 
extrapolation may suffer from excessive computational demand and redundancy 
when the total number of grain elements is great. This can be a real problem even 
with the most advanced computing facility because the computational demand for 



such simulations increases exponentially with the number of grain elements. This 
problem can be alleviated by running the local model for each patch type (the 
aggregate of grain elements of the same type) instead of each grain element or 
individual patch because direct extrapolation is spatially "explicit," but not spatially 
"interactive." In other words, grain elements or patches are treated individually 
without considering the influences among them (see Peters et al., Chapter 7). The 
scaling results in the two cases should be similar as long as the variability of inputs 
and parameters within each patch type is insignificant. 

Moreover, it is important to note that the assumption behind direct extrapolation 
that horizontal interactions and feedbacks are negligible or at steady state may not 
be valid in many situations, especially when lateral hydrological flows and 
exchanges of energy, materials and biological organisms in landscapes are 
significant and asymmetric. In other words, only one of the two components of 
spatial pattern, compositional heterogeneity (the diversity and relative abundance of 
patches), is recognized in this approach, leaving configurational heterogeneity (the 
geometric and spatial arrangement of patches) and its functional consequences 
unaccounted. Another implicit assumption is that there are no new patterns and 
processes emerging as the spatial extent increases. This can be a severe problem 
when direct extrapolation is practiced over a broad range of scale. Finally, spatial 
data on many processes often are not available for all the grain elements, resulting in 
obstacles for the effective application of this method. 

2.3.2.4 Extrapolation by expected value 

Similar to direct extrapolation, extrapolation by expected value (sensu King 1991) 
does not require the local-scale model to apply at the target scale. The expected 
value method treats model arguments as random variables, quantifies spatial 
heterogeneity by the joint probability distribution of model arguments, and uses the 
expected value of the local model outputs (also random variables) as the target-scale 
estimate (King 1991), i.e., 

where E[]  is the mathematical expectation operator. 
For discrete variables, the mathematical expectation of model outputs can be 

expressed as summations, i.e., 
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where @() is the joint probability distribution functions of the model arguments that 
describe the spatial heterogeneity of the model domain. For continuous variables, 
integrals are used in the places of summations. 

Apparently, the most critical step in upscaling with the expected value method is 
to compute the mathematical expectation of the outputs of the local model, which 
requires an accurate description of the fine-scale spatial heterogeneity or variability. 
If the joint probability density functions, 6 0 ,  can be estimated explicitly, the 
expected value of model outputs can be derived directly using analytical or 
numerical techniques (King 1991). However, in many cases the explicit forms of the 
joint probability density functions cannot be found, and thus a sampling approach 
(e.g., Monte Carlo simulation) may be used to compute the expected value of the 
outputs of the local model. While direct extrapolation requires a full representation 
of the heterogeneity in a spatially explicit manner, the expected value method 
defines the fine-scale spatial heterogeneity only in statistical terms. However, both 
methods share two key issues: accurately describing spatial heterogeneity in terms 
of model arguments at the fine scale, and properly aggregating outputs from the 
local model to derive the estimate at the broader scale. 

Because the local model does not have to apply to the target scale, extrapolation 
by expected value can be a rather general upscaling approach. It also overcomes 
some of the problems encountered in the previous methods: for example, the 
problem of oversimplifying spatial heterogeneity in the lumping method, difficulties 
in deriving effective parameters, and excessive data and computational demands 
with direct extrapolation when the target scale is too broad in extent. The method of 
expected value is quite amenable to uncertainty analysis (Li and Wu, Chapter 3) 
and, particularly, the results of Monte Carlo simulation may be used to estimate an 
unbiased confidence interval for the extrapolated value at the target scale (King 
1991). This approach has been applied to a number of important ecological 
phenomena, including extrapolating information on primary production, trace gas 
fluxes, and other biophysical properties from local plots to landscapes or regions 
(e.g., King 1991, King et al. 199 1). 

A major potential problem with the expected value method is that, as in direct 
extrapolation, neither the geometric attributes and spatial arrangement of patches nor 
the interactions and feedbacks among grain elements (or patches) are explicitly 
considered. Therefore, scaling errors with this method are expected to increase when 
lateral flows and feedbacks are strong and significantly asymmetric or far from a 
steady state. Also, as with direct extrapolation, this method does not account for any 
new patterns and processes that emerge with increasing extent. In real landscapes, 
however, new processes and controls do emerge at progressively broader scales. If 
these "new" attributes have significant nonlinear effects, a method completely 
ignoring them is not only theoretically improper but practically inaccurate as well. 

2.3.2.5 Explicit integration 

If the spatial variations of all the arguments of the local-scale model can be 
adequately and explicitly represented as functions of space (x, y) in closed form, and 



if the indefinite integral of the local model with respect to space exists (and can be 
found), upscaling between two scales can be accomplished by directly integrating 
the local-scale model. This method was termed explicit integration (King 199 I), i.e., 

where x and y are spatial coordinates, and A is the area of the region R over which 
the integration is performed. 

The local model only needs to be evaluated once, and the prediction can be made 
precisely at any spatial scale within the defined region, R. In contrast with the 
lumping, effective parameters, direct, and expected value methods discussed earlier, 
the structure of the local-scale model now changes as a function of space during 
extrapolation by explicit integration. Explicit integration is elegant, efficient, and 
accurate when all of its requirements are met. However, because of the prevalence 
of nonlinear relationships in ecological models and complex spatial structures of 
model arguments, the applicability of explicit integration as an upscaling method is 
rather limited in practice. First of all, it is difficult or even impossible to represent 
spatial heterogeneity with closed-form mathematical functions of model arguments 
with acceptable accuracy. Second, even if this can be done, finding the indefinite 
integrals of nonlinear models, in general, is a formidable task. If the closed-form 
indefinite integrals cannot be found, approximating the double definite integral by 
numerical methods is equivalent to either direct extrapolation or extrapolation by 
expected value (King 199 1). 

2.3.2.6 Spatially interactive modeling 

Not only do many processes in landscapes vary in their characteristics from one 
place to another, but also they often interact in space to generate feedbacks and 
emergent properties (Raupach et al. 1999, Wu 1999, Peterson 2000). Such examples 
include population dynamics in patchy environment, hydrological and 
biogeochemical dynamics in complex landscapes, and land-water and land- 
atmosphere interactions on various scales. To adequately understand and predict 
such phenomena across scales, models must explicitly consider the horizontal 
interactions of the processes under study. 

Spatially interactive modeling integrates the two aspects of spatial scaling - 
characterizing heterogeneity and aggregating information between scales - into the 
dynamic models themselves. In this case, local-scale models or submodels are 
usually embedded in the larger-scale model (e.g., a metapopulation model consisting 
of many interacting local population models or a landscape model composed of 
multiple ecosystem models). Spatially interactive modeling deals explicitly with not 
only spatial variations in model arguments, but also the interactions among grain 
elements or patches. In other words, the values of the arguments of a local-scale 
model in one grain element or patch not only differ from, but also are functions of, 
the attributes of other (often neighboring) patches and the landscape matrix. 
Spatially interactive modeling is able to incorporate feedbacks, time delays, and new 
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features on larger scales. Different types of models emphasize different aspects of 
between-patch interactions (e.g., dispersal and species interactions in population and 
community models; hydrological and material exchanges in ecosystem models; 
spreading disturbances like fires and pests in many landscape models). In this case, 
the model conceptualization at the local scale (sl)  may be described as follows: 

where y(s,) is the model output at the local scale s,, vk is a state variable for 

patch k, 0 and ik are parameters and input variables for the same patch k, Spk is 

the net exchange between patch k and all other patches, 6nk is the net exchange 

between patch k and the landscape matrix, and f () defines the local model in terms 
of within-patch dynamics. Then, the prediction at the target scale at any point of 
time t, Y (s2, t) , can be described as: 

where N is the total number of grain elements or patches at scale sl . 
For ecological processes in a shifting landscape mosaic, the dynamics of both 

landscape pattern and ecological processes, as well as their interactions, have to be 
modeled explicitly. For example, the overall population density in a dynamic 
landscape may be predicted by coupling the patch dynamics of the biological 
population of interest and the changing habitat patches (Levin and Paine 1974, 
Levin 1976): 

- 
where n j ( t)  is the overall population density of species j in the landscape, 
p(t,a,t) is the probability density function describing the frequency distribution of 

patches of age a and size 5 at time t, 9 j  (t,a96) is the population density of 
0 

species j within a patch of age a and size 5 at time t, 9 (t)is the population density 

of the same species in the non-patch area, and A is the total area of the landscape. 
Specifying such models in closed forms and solving them analytically are 

difficult or impossible for real landscapes. Spatially explicit simulation modeling 
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with Monte Carlo integration provides a general approach to dealing with such 
complex patch dynamics problems (Wu and Levin 1997). 

In the past two decades, a great number of spatially interactive models of 
different kinds have been developed in ecology and earth sciences, examining such 
topics as metapopulation dynamics (Hanski 1999), landscape dynamics (e.g., Li et 
al. 1993, Wu and Levin 1997), hydrological and biogeochemical processes (e-g., 
Tenhunen and Kabat 1999, Beven 2000), and socioeconomic processes (Schweitzer 
1 997). Many modeling approaches have been used, including various grid-based 
models, cellular automata, and individual-based and agent-based models. Most, if 
not all, spatially interactive models are multiscaled or hierarchical. For scaling 
across broader spatial scales such as landscapes and regions, GIs and remote 
sensing techniques have increasingly been used in such models. The main sources of 
error in upscaling with spatially interactive modeling vary from case to case, but are 
due primarily to the characterization of spatial heterogeneity, formulation of spatial 
interactions, interface of multiple scales, and computational algorithms. In addition, 
such models can be quite demanding in data and computational requirements. 

2.3.2.7 Extrapolation along a scaling ladder 

The upscaling methods discussed above are in principle only applicable to situations 
where there are neither significant asymmetric between-patch interactions nor scale- 
dependent or emergent patterns and processes. These are typically "short-range" 
scaling methods because the assumptions behind them are less likely to be satisfied 
over a broad range of scale. When scaling involves multiple scale domains or levels 
of organization, new patterns and processes at different scales as well as vertical 
linkages need to be taken into account. How can these "short-range" upscaling 
methods be used for transferring information over a "long range" of scales that have 
multiple scaling domains or organizational levels? 

To address this question, Wu (1999) proposed a "scaling ladder" approach based 
on the hierarchical patch dynamics (HPD) paradigm, which integrates hierarchy 
theory and patch dynamics (Wu and Loucks 1995). The scaling ladder approach 
facilitates the understanding and scaling of patterns and processes in different kinds 
of heterogeneous landscapes (Hay et al. 2001, Poole 2002, Wu and David 2002, 
Burnett and Blaschke 2003). The first step in this approach is to construct a spatially 
nested hierarchical system with distinctive scaling domains or levels of organization. 
Top-down (partitioning) or bottom-up (aggregation) schemes can be used in this 
step (Wu 1999). A top-down approach identifies the levels of a hierarchy by 
progressively partitioning the entire system downscale, whereas a bottom-up scheme 
involves successively aggregating or grouping similar entities upscale. A priori 
spatial hierarchies based on empirical observations and natural biophysical 
boundaries may be used as long as they are spatially nested and relevant to processes 
of interest. Such empirical hierarchies are commonly found in all fields of study, 
including the individual-population-community-biome or plot-ecosystem-landscape- 
region hierarchies (e.g., Urban et al. 1987, Jarvis 1995), soil-type hierarchies 
(Woodmansee 1990), hydrologic unit hierarchies (e.g., site-drainage-subwatershed- 
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watershed-subbasin-basin-subregion-region; Griffith et al. 1999), and landscape and 
geomorphological hierarchies (e.g., Reynolds and Wu 1999). 

It is important to realize that the appropriateness of a given hierarchy varies with 
the process under study and research questions to be addressed (Wu and Loucks 
1995, Wu 1999, Omernik 2003). Quantitative methods, including landscape metrics, 
spatial statistics, and object-oriented approaches can be used for identifying patch 
hierarchies (e.g., O'Neill et al. 1991, Li and Wu 2004, Hay et al. 2001,2003, Hall et 
al. 2004, Wu 2004). As emphasized in Wu and Loucks (1995) and Wu (1999), these 
spatial hierarchies should be constructed with consideration of both pattern and 
process, such that they are neither completely arbitrary, nor simply products of 
spatial analyses. Also, they are dynamic, not static, as indicated by the phrase 
"hierarchical patch dynamics." Once an appropriate patch hierarchy, or a scaling 
ladder, is established, the short-range scaling methods discussed above can be 
applied within each scale domain or between two adjacent hierarchical levels 
(Figure 2.2). This can be accomplished by changing grain, extent, or both. 

Domains of scale 

a - 
m 
$ 
- 
E 
0 0. 
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Varying grain or extent or both 

Spatial Scale 

Figure 2.2 Illustration of the scaling ladder approach in which scaling up (or down) is 
implemented by changing model grain size, extent, or both across successive domains of scale 
(redrawn fLom Wu 1999). 

2.3.3 Downscaling Methods 

The central question of downscaling is: given the aggregated values, the probability 
distributions, or the functional relationships of variables at a particular scale, how 
can they be derived at a smaller scale (Bierkens et al. 2000)? In many applications, 
the objective of downscaling is, "given the average value over a certain domain, to 
derive the detailed pattern within that domain" (Bloschl and Sivapalan 1995). 
Downscaling methods usually share the assumption that the variable to be 
downscaled varies according to some function of space within the support units, and 
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thus downscaling the variable is essentially to seek the parameters of this function 
such that the average value of the support unit or its probability distribution is 
maintained (Bierkens et al. 2000). In principle, downscaling does not produce 
unique solutions because the values of a variable at scale sl may vary within a grain 

unit in an infinite number of ways without changing the average value at s2. For 

example, for a grain unit at scale s2 composed of 4 smaller grain units at scale sl, 

there are an infinite number of combinations of the values that the four sl grain 
units may take to produce the average value of 1. 

Bierkens et al. (2000) discussed three kinds of downscaling problems: (1) 
deterministic downscaling, (2) conditional stochastic downscaling, and (3) 
unconditional stochastic downscaling. In deterministic downscaling, the average 
property at scale s2 is known exactly, and the objective is to find a single 
deterministic function to describe the spatial or temporal variation of values at scale 
sl , such that the average of disaggregated values matches the known average value 

at scale s2. In conditional stochastic downscaling, the average property at scale s2 
is also known exactly, but the objective is to find a set of equally probable functions 
that can predict the disaggregated values at sl while maintaining the same known 

average value at s2. Monte Carlo analysis can be used in this case. Unconditional 
stochastic downscaling occurs when only the probability density function of the 
average property at scale s2 is known. The objective is to find a family of equally 

probable hct ions  of the spatial or temporal variation at sl that produce the known 

probability density function of the average property at s2. Bloschl and Sivapalan 
(1995) and Bierkens et al. (2000) provided several examples in the context of soil 
and hydrological sciences (e.g., disaggregating information on soil properties in a 
soil profile or over a geographic area, and downscaling hydrological time series or 
spatial pattern of rainfall). These three kinds of downscaling problems can be 
studied with either empirical functions or mechanistic models (Bierkens et al. 2000). 

While there are various needs for downscaling over relatively fine scales, the 
current literature on downscaling is clearly dominated by climate studies on much 
broader scales. Because General Circulation Models (GCMs) operate at spatial 
resolutions (usually >2' in both latitude and longitude) that are too coarse for 
understanding the regional and local impacts of global climate change, there has 
been a great deal of research in climate downscaling in the past few decades. 
Specifically, climate downscaling refers to "a set of procedures by which we attempt 
to take information available at the relatively poor spatial resolution of the GCMs, 
and derive regional-scale data that can be used for ecosystems modeling, climate 
impact assessment, and other tasks that require higher resolution climate data" 
(Crane et al. 2002). Thus, the primary objective of climate downscaling is 
disaggregating (i.e., fine-graining) GCM outputs to produce patterns of surface 
climatic conditions (e.g., temperature, precipitation, wind velocity) at regional (and 
eventually local) scales on which most ecological and socioeconomic processes 
operate. Parallel to the two general approaches to scaling, the methods of 
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downscaling are also commonly classified into two main approaches: empirically- 
based statistical downscaling and process model-based downscaling (Hewitson and 
Crane 1996, Crane et al. 2002). 

The empirically-based statistical downscaling approach derives quantitative 
relationships between large-scale synoptic circulation features (e.g., upper level 
winds, geopotential heights, and sea level pressure) predicted by GCMs and regional 
climate conditions (e.g., temperature, precipitation, wind velocity) based on 
observations. These relations, in some form of y = f (x), are often referred to as 
"transfer functions," which are obtained through multiple linear regression, artificial 
neural networks (ANNs), classification and regression trees (CART), and other 
statistical methods (Hewitson and Crane 1996, Wilby et al. 1998, Sailor et al. 2000, 
Crane et al. 2002). Note that, in contrast with the empirical methods in allometric 
and similarity analysis discussed earlier, empirical downscaling in climate studies 
rarely invokes similarity assumptions of any kind. The feasibility and the validity of 
the empirical approach hinge on the fundamental assumption that "stable empirical 
relationships can be established between atmospheric processes occurring at 
disparate temporal and/or spatial scales" (Wilby et al. 1998). Thus, such empirical or 
statistical relationships do not have the capacity to explain how circulation-related 
processes affect regionaVloca1 climate, and their predictive ability is undermined by 
the fact that transfer functions are often varying in time. Empirical techniques in 
climate downscaling have been widely used because they are operationally simpler 
and computationally much less demanding than the process modeling approach. 

The process-based downscaling approach, also called nested modeling, embeds 
a higher-resolution regional climate model within a global GCM so that the coarse- 
grained predictions from GCM are dynamically translated into fine-grained outputs 
of the regional model. In most cases, the output of GCM from a large grid cell is 
used to provide boundary conditions for the regional climate model inside the grid 
cell in one-way nesting schemes. There are also two-way nesting schemes in which 
GCM and the embedded regional climate model run simultaneously and interact 
with each other across scales. Because the land surface characteristics may 
significantly affect local, regional, and even global climatic processes (Pielke and 
Avissar 1990, Raupach et al. 1999), nested modeling provides a necessary and 
promising approach to climate downscaling and to coupling geophysical and 
ecological processes across scales in general. However, because of the excessive 
computational demands and the lack of understanding of interface mechanisms of 
climatic processes at different scales, two-way nesting has not yet been commonly 
used in climate downscaling with GCMs. 

2.4 DISCUSSION AND CONCLUSIONS 

We have classified numerous scaling methods into two general approaches: 
similarity-based versus dynamic model-based. The first approach itself has a 
diversity of methods, including those relying on empirical, statistical methods and 
those based on first principles and analytical methods such as dimensional and 
similarity techniques. The dynamic model-based scaling approach, in contrast, puts 
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more emphasis on the processes and mechanisms of interest, and employs a variety 
of methods for modeling (deterministic and stochastic), quantifying heterogeneity, 
and aggregating information across scales. Similarity-based scaling techniques also 
have been used in dynamic model-based scaling methods. Thus, the two general 
approaches are not mutually exclusive; on the contrary, they should be considered 
complementary. 

The similarity-based scaling approach is elegant and powerful when it is found 
applicable to the problem at hand. If the scaling relations are valid, using them for 
extrapolation is simple and bi-directional (both up and down). However, caution 
must be taken when underlying processes and mechanisms are inferred from such 
scaling relations. Brown et al. (2000) asserted that "most biological scaling 
relationships are manifestations of a single underlying scaling process, which 
appears to be based on quarter powers and to be unique to living things." However, 
because ecological systems are mixtures of physical, chemical, biological, and 
socioeconomic processes, it is unlikely that a single similarity criterion applies to all 
or most of them (Prothero 1986). The empirical determination of a power scaling 
relationship cannot be simply taken as prima facie evidence for similarity (i.e., 
objects of different sizes are similar in geometry and shape) because 
"pseudosimilarity" may also result in straight lines in a log-log regression plot 
(Prothero 1986). Thus, geometric similarity will for sure result in power laws of 
simple multiples of 113, but the reverse is not guaranteed (Niklas 1994). The same 
can be said about the relationship between power laws and other kinds of similarity. 
One needs to bear in mind that statistical equations merely express correlations, any 
of which can be spurious (Prothero 1986). 

There are several reasons why dynamic-model scaling methods ought to be used 
in many situations. First of all, not all ecological patterns and processes adequately 
meet the criteria of complete similarity (e.g., geometric similarity) or incomplete 
similarity (e.g., self-similarity or self-affinity). Therefore, alternative methods are 
needed for translating information from one scale to another for those patterns and 
processes. Second, the goals of scaling may be not only to describe and predict 
across scales, but also to understand patterns and processes at multiple scales. 
However, most similarity-based methods are empirical, relying primarily on 
statistical techniques, and do not deal directly with dynamic processes. Empirical 
equations provide useful information on quantitative relations among variables, but 
tell us little beyond the quantitative relations themselves (Prothero 1986). On the 
other hand, analytical similarity-based methods either demand explicit mathematical 
expressions of processes under study or start with well-established first principles. 
These requirements can rarely be met for most complex ecological problems. Third, 
ecologists are often interested in quantifying how spatial heterogeneity interacts with 
ecological processes in their efforts to scale across space. This requires an approach 
that deals with space explicitly and processes directly. Apparently, similarity-based 
methods that rely on regression or differential equations are inadequate to achieve 
this objective. 

Dynamic model-based scaling methods can be used to overcome these 
shortcomings because (1) they are not constrained by similarity assumptions, (2) 
they can explicitly consider dynamic processes and their interactions, and (3) they 
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can couple patterns and process in spatially explicit fashion. Spatial scaling with 
dynamic models has two critical steps: accurately defining and quantifying the fine- 
scale heterogeneity and properly aggregating or integrating this heterogeneity 
through model arguments or outputs to derive broad-scale projections (King 1991, 
Bloschl and Sivapalan 1995, Wu 1999). Besides the methods discussed here, there 
are other dynamic modeling techniques also relevant to spatial upscaling. For 
examples, the methods of model simplification or model aggregation (e.g., O'Neill 
and Rust 1979, Iwasa et al. 1989, Cale 1995) are useful for upscaling especially 
when they directly address the problem of spatial aggregation. Metamodeling - 
developing coarse-scale models based on fine-scale models - is directly relevant to 
upscaling (e.g., de Vries et al. 1998, Urban et al. 1999, Bierkens et al. 2000). 

To develop a science of scaling, a pluralistic strategy is necessary. The pluralism 
should not only be reflected in the views and theories of scaling, but also need to be 
implemented in the methods and applications of transferring information across 
scales. Pluralism does not mean arbitrary division and diversification; rather, it 
provides a realistic basis for enlightened scaling. It would be nice if the systems of 
all kinds in the universe behaved like a sandpile, so that simple power laws could 
adequately describe "how nature works." Although some physical, ecological, and 
socioeconomic systems may indeed exhibit scale-invariant behavior within certain 
temporal and spatial scale domains (e.g., Chave and Levin 2003, Wu 2004), scaling 
is certainly more than just deriving power laws. In particular, the progress in 
ecological scaling depends on how well we can integrate the different scaling 
approaches and methods, and use them appropriately for the intended problems. 

ACKNOWLEDGEMENTS 

We would like to thank Geoffiey Hay, Fangliang He, and Simon Levin for their 
comments on an earlier version of the chapter. JW's research on scaling has been 
supported in part by grants from US EPA's Science to Achieve Results (STAR) 
Program (R827676-0 1-0) and US NSF (DEB 97 14833, CAPLTER). 

REFERENCES 

Barenblatt, G. I. 1996. Scaling, Self-Similarity, and Intermediate Asymptotics. Cambridge University 
Press, Cambridge. 

Becker, A., and P. Braun. 1999. Disaggregation, aggregation and spatial scaling in hydrological 
modelling. Journal of Hydrology 21 7:239-252. 

Belyea, L. R., and J. Lancaster. 2002. Inferring landscape dynamics of bog pools from scaling 
relationships and spatial patterns. Journal of Ecology 90:223-234. 

Berntson, G. M., and P. Stoll. 1997. Correcting for finite spatial scales of self-similarity when calculating 
the fractal dimensions of real-world structures. Proceedings of the Royal Society of London Series B- 
Biological Sciences 264: 153 1-1 537. 

Beven, K-2000. On the future of distributed modelling in hydrology. Hydrological Processes 14:3183- 
3184. 

Bierkens, M. F. P., P. A. Finke, and P. de Willigen. 2000. Upscaling and Downscaling Methods for 
Environmental Research. Kluwer Academic Publishers, Dordrecht. 

Binney, J. J., N. J. Dowrick, A. J. Fisher, and M. E. Newman. 1993. The Theory of Critical Phenomena: 
An Introduction to the Renormalization Group. Oxford Science, Oxford. 

Blbschl, G., and M. Sivapalan. 1995. Scale issues in hydrological modelling: A review. Hydrological 



PERSPECTIVES AND METHODS OF SCALING 39 

Processes 9:25 1-290. 
Bokma, F. 2004. Evidence against universal metabolic allometry. Functional Ecology 18: 184- 187. 
Brown, J. H., V. K. Gupta, B.-L. Li, B. T. Milne, C. Restrepo, and G. B. West. 2002. The fractal nature of 

nature: power laws, ecological complexity and biodiversity. Philosophical Transactions of the Royal 
Society (London B) 357:619-626. 

Brown, J. H., G. B. West, and B. J. Enquist. 2000. Patterns and processes, causes and consequences. 
Pages 1-24 in J. H. Brown and G. B. West, editors. Scaling in Biology. Oxford University Press, 
New York. 

Bull, W. B. 1975. Allometric change of landforms. Geological Society of America Bulletin 86:1489- 
1498. 

Burnett, C., and T. Blaschke. 2003. A multi-scale segmentationlobject relationship modeling 
methodology for landscape analysis. Ecological Modelling 168:233-249. 

Calder, W. A. 1983. Ecological scaling: mammals and birds. Annual Review of Ecology and Systematics 
14:213-230. 

Cale, W. G. 1995. Model Aggregation - Ecological perspectives. Pages 230-241 in B. C. Patten, S. E. 
Jorgensen, and S. I. Auerbach, editors. Complex Ecology. Prentice-Hall, Englewood Cliffs. 

Carbone, C., and J. L. Gittleman. 2002. A common rule for the scaling of carnivore density. Science 
295:2273-2276. 

Chave, J., and S. A. Levin. 2003. Scale and scaling in ecological and economic systems. Environmental 
and Resource Economics 26:527-557. 

Church, M., and D. M. Mark. 1980. On size and scale in geomorphology. Progress in Physical Geography 
4:342-390. 

Crane, R. G., B. Yarnal, E. J. Barron, and B. Hewitson. 2002. Scale interactions and regional climate: 
examples from the Susquehanna River Basin. Human and Ecological Risk Assessment 8:147-158. 

Crawley, M. J., and J. E. Harral. 2001. Scale dependence in plant biodiversity. Science 291:864-868. 
Cyr, H., and S. C. Walker. 2004. An illusion of mechanistic understanding. Ecology 85: 1802-1804. 
de Vries, W., J. Kros, C. van der Salm, J. E. Groenenberg, and G. J. Reinds. 1998. The use of upscaling 

procedures in the application of soil acidification models at different spatial scales. Nutrient Cycling 
in Agroecosystems 50:223-236. 

Dolman, A. J., and E. A. Blyth. 1997. Patch scale aggregation of heterogeneous land surface cover for 
mesoscale meteorological model. Journal of Hydrology 190:252-268. 

Enquist, B. J., J. H. Brown, and G. B. West. 1998. Allometric scaling of plant energetics and population 
density. Nature 395: 163-165. 

Gardner, R. H., B. T. Milne, M. G. Turner, and R V. O'Neill. 1987. Neutral models for the analysis of 
broad-scale landscape pattern. Landscape Ecology 1: 19-28. 

Goovaerts, P. 1997. Geostatistics for Natural Resources Evaluation. Oxford University Press, New York. 
Gould, S. J. 1966. Allometry and size in ontogeny and phylogeny. Biological Review 41:587-640. 
GriMith, G. E., J. M. Omernik, and A. J. Woods. 1999. Ecoregions, watersheds, basins, and HUCs: how 

state and federal agencies frame water quality. Journal of Soil and Water Conservation 54666-677. 
Gunther, B. 1975. Dimensional analysis and theory of biological similarity. Physiological Reviews 

55:659-699. 
Hall, O., G. J. Hay, A. Bouchard, and D. J. Marceau. 2004. Detecting dominant landscape objects through 

multiple scales: an integration of object-specific methods and watershed segmentation. Landscape 
Ecology 19:59-76. 

Hanski, I., editor. 1999. Metapopulation Ecology. Oxford University Press, New York. 
Harte, J., A. Kinzig, and J. Green. 1999. Self-similarity in the distribution and abundance of species. 

Science 284:334-336. 
Hastings, H. M., and G. Sugihara. 1993. Fractals: A User's Guide for the Natural Sciences. Oxford 

University Press, Oxford. rn 

Haverkamp, R., J.-Y. Parlange, R. Cuenca, P. J. Ross, and T. S. Steenhuis. 1998. Scale analyses for land- 
surface hydrology. Pages 190-223 in G. Sposito, editor. Scale Dependence and Scale Invariance in 
Hydrology. Cambridge University Press, Cambridge. 

Hay, G., D. J. Marceau, P. Dubk, and A. Bouchard. 2001. A multiscale framework for landscape analysis: 
object-specific analysis and upscaling. Landscape Ecology 16:471-490. 

Hay, G. J., T. Blaschke, D. J. Marceau, and A. Bouchard. 2003. A comparison of three image-object 
methods for the multiscale analysis of landscape structure. ISPRS Journal of Photogrammetry and 
Remote Sensing 57:327-345. 



40 J. Wu AND H. LI 

Hewitson, B. C., and R. G. Crane. 1996. Climate downscaling: techniques and application. Climate 
Research 7:85-95. 

Hood, W. G. 2002. Application of landscape allometry to restoration of tidal channels. Restoration 
Ecology 10:213-222. 

Iwasa, Y., S. A. Levin, and V. Andreasen. 1989. Aggregation in model ecosystems: 11. approximate 
aggregation. IMA Journal of Mathematics Applied in Medicine & Biology 6:l-23. 

Jarvis, P. G. 1995. Scaling processes and problems. Plant, Cell and Environment 18:1079-1089. 
King, A. W. 1991. Translating models across scales in the landscape. Pages 479-517 in M. G. Turner and 

R. H. Gardner, editors. Quantitative Methods in Landscape Ecology. Springer-Verlag, New York. 
King, A. W., A. R. Johnson, and R. V. O'Neill. 1991. Transmutation and functional representation of 

heterogeneous landscapes. Landscape Ecology 5:239-253. 
Kozlowski, J., and M. Konarzewski. 2004. Is West, Brown and Enquist's model of allometric scaling 

mathematically correct and biologically relevant? Functional Ecology 18:283-289. 
Kunin, W. E. 1998. Extrapolating species abundance across spatial scales. Science 28 1: 15 13-1 5 15. 
L'homme, J. P., A. Chehbouni, and B. A. Monteny. 1996. Canopy to region scale translation of surface 

fluxes. Pages 161-182 in J. B. Stewart, E. T. Engman, R. A. Feddes, and Y. Kerr, editors. Boundary- 
Layer Meteorology. Wiley, Chichester. 

LaBarbera, M. 1989. Analyzing body size as a factor in ecology and evolution. Annual Review of 
Ecology and Systematics 20:97-117. 

Lam, N. S. 1983. Spatial interpolation methods: a review. The American Cartographer 10:129-149. 
Levin, S. A. 1976. Population dynamic models in heterogeneous environments. Annual Review of 

Ecology and Systematics 7:287-310. 
Levin, S. A. 1992. The problem of pattern and scale in ecology. Ecology 73:1943-1967. 
Levin, S. A., and S. W. Pacala. 1997. Theories of simplification and sclaing of spatially distributed 

processes. Pages 271-295 in D. Tilman and P. Kareiva, editors. Spatial Ecology. Princeton University 
Press, Princeton. 

Levin, S. A., and R. T. Paine. 1974. Disturbance, patch formation and community structure. Proceedings 
of the National Academy of Sciences 7 1:2744-2747. 

Li, H., and J. Wu. 2004. Use and misuse of landscape indices. Landscape Ecology 19:389-399. 
Li, H., J. F. Franklin, F. J. Swanson, and T. A. Spies. 1993. Developing alternative forest cutting patterns: 

a simulation approach. Landscape Ecology 8:63-75. 
Lomolino, M. V. 2000. Ecology's most general, yet protean pattern: the species-area relationship. Journal 

of Biogeography 27: 17-26. 
Lonsdale, W. M. 1990. The self-thinning rule: dead or alive? Ecology 7 1 : 1373-1388. 
Magnani, F. 1999. Plant energetics and population density. Nature 398:572. 
Mandelbrot, B. B. 1982. The Fractal Geometry of Nature. W. H. Freeman and Company, New York. 
Mandelbrot, B. B. 1999. Multifractals and Iff Noise: Wild Self-Affinity in Physics (1963-1976). 

Springer-Verlag, New York. 
Marceau, D. J. 1999. The scale issue in social and natural sciences. Canadian Journal of Remote Sensing 

25:347-356. 
Miller, E. E., and R. D. Miller. 1956. Physical theory for capillary flow phenomena. Journal of Applied 

Physics 27:324-332. 
Milne, B. T. 1991. Heterogeneity as a multiscale characteristic of landscapes. Pages 69-84 in J. Kolasa 

and S. T. A. Pickett, editors. Ecological Heterogeneity. Springer-Verlag, New York. 
Milne, B. T. 1998. Motivation and benefits of complex systems approaches in ecology. Ecosystems 

1 :449-456. 
Niklas, K. J. 1994. Plant Allometry: The Scaling of Form and Process. University of Chicago Press, 

Chicago. 
Nikora, V. I., C. P. Pearson, and U. Bhankar. 1999. Scaling properties in landscape patterns: New Zealand 

experience. Landscape Ecology 14: 17-33. 
O'Neill, R. V. 1979. Natural variability as a source of error in model predictions. Pages 23-32 in G. S. 

Innis and R. V. O'Neill, editors. Systems Analysis of Ecosystems. International Co-operative 
Publishing House, Fairland, MD. 

O'Neill, R. V., R. H. Gardner, B. T. Milne, M. G. Turner, and B. Jackson. 1991. Heterogeneity and 
Spatial Hierarchies. Pages 85-96 in J. Kolasa and S. T. A. Pickett, editors. Ecological Heterogeneity. 
Springer-Verlag, New York. 

O'Neill, R. V., and B. Rust. 1979. Aggregation error in ecological models. Ecological Modelling 7:91- 



PERSPECTIVES AND METHODS OF SCALING 41 

105. 
Omernik, J. M. 2003. The misuse of hydrologic unit maps for extrapolation, reporting, and ecosystem 

management. Journal of American Water Resources Association 39563-573. 
Peters, R. H. 1983. The Ecological Implications of Body Size. Cambridge University Press, Cambridge. 
Peterson, G. D. 2000. Scaling ecological dynamics: Self-organization, hierarchical structure, and 

ecological resilience. Climatic Change 44:291-309. 
Phillips, J. D. 1999. Earth Surface Systems: Complexity, Order and Scale. Blackwell Publishers Ltd., 

Malden, Massachusetts. 
Pielke, R. A., and R. Avissar. 1990. Influence of landscape structure on local and regional climate. 

Landscape Ecology 4: 133-1 55. 
Poole, G. C. 2002. Fluvial landscape ecology: addressing uniqueness within the river discontinuum. 

Freshwater Biology 47:641-660. 
Prothero, J. 1986. Methodological aspects of scaling in biology. Journal of Theoretical Biology 118259- 

286. 
Quattrochi, D. A., and M. F. Goodchild, editors. 1997. Scale in Remote Sensing and GIs. CRC Lewis 

Publishers, Boca Raton. 
Raupach, M. R., D. D. Baldocchi, H.-J. Bolle, L. Diimenil, W. Eugster, F. X. Meixner, J. A. Olejnik, R. 

A. Pielke, J. D. Tenhunen, and R. Valentin. 1999. How is the atmospheric coupling of land surfaces 
affected by topography, complexity in landscape patterning, and the vegetation mosaic? Pages 177- 
196 in J. D. Tenhunen and P. Kabat, editors. Integrating Hydrology, Ecosystem Dynamics, and 
Biogeochemistry in Complex Landscapes. Wiley, Chichester. 

Reynolds, J. F., and J. Wu. 1999. Do landscape structural and functional units exist? Pages 273-296 in J. 
D. Tenhunen and P. Kabat, editors. Integrating Hydrology, Ecosystem Dynamics, and 
Biogeochemistry in Complex Landscapes. Wiley, Chichester. 

Rodriguez-Iturbe, I., and A. Rinaldo. 1997. Fractal River Networks. Cambridge University Press, New 
York. 

Sailor, D., T. Hu, X. Li, and J. N. Rosen. 2000. A neural network approach to local downscaling of GCM 
output for assessing wind power implications of climate change. Renewable Energy 19:359-378. 

Scheurer, D. L., D. C. Schneider, and L. P. Sanford. 2001. Scaling issues in marine experimental 
ecosystems. Pages 330-360 in R. H. Gardner, W. M. Kemp, V. S. Kennedy, and J. E. Petersen, 
editors. Scaling Relations in Experimental Ecology. Columbia University Press, New York. 

Schmid, P. E., M. Tokeshi, and J. M. Schmid-Araya. 2000. Relation between population density and body 
size in stream communities. Science 289: 1557-1560. 

Schmidt-Nielsen, K. 1984. Scaling: Why Is Animal Size So Important? Cambridge University Press, 
Cambridge. 

Schneider, D. C. 2001a. Spatial allometry. Pages 113-153 in R. H. Gardner, W. M. Kemp, V. S. Kennedy, 
and J. E. Petersen, editors. Scaling Relations in Experimental Ecology. Columbia University Press, 
New York. 

Schneider, D. C. 2001b. The rise of the concept of scale in ecology. Bioscience 51545-553. 
Schoener, T. W., D. A. Spiller, and J. B. Losos. 2001. Natural restoration of the species-area relation for a 

lizard after a hurricane. Science 294:1525-1528. 
Schroeder, M. 1991. Fractals, Chaos, Power Laws: Minutes from an Infinite Paradise. W.H. Freeman and 

Company, New York. 
Schweitzer, F., editor. 1997. Self-organization of Complex Structures: From Individual to Collective 

Dynamics. Gordon and Breach Science Publishers, Amsterdam. 
Shmida, A., and M. Wilson. 1985. Biological determinants of species diversity. Journal of Biogeography 

12:l-20. 
Sposito, G., editor. 1998. Scale Dependence and Scale Invariance in Hydrology. Cambridge University 

Press, Cambridge. 
Stanley, and H. E. P. Meakin. 1988. Multihctal phenomena in physics and chemistry. Nature 335:405- 

409. 
Tenhunen, J. D., and P. Kabat, editors. 1999. Integrating Hydrology, Ecosystem Dynamics, and 

Biogeochemistry in Complex Landscapes. Wiley, Chichester. 
Turcotte, D. L. 1995. Scaling in geology: landforms and earthquakes. Proceedings of the National 

Academy of Science 92:6697-6704. 
Turner, M. G., V. H. Dale, and R. H. Gardner. 1989. Predicting across scales: theory development and 

testing. Landscape Ecology 3:245-252. 



Urban, D. L., M. F. Acevedo, and S. L. Garman. 1999. Scaling fine-scale processes to large-scale patterns 
using models derived from models: meta-models. Pages 70-98 in D. J. Mladenoff and W. L. Baker, 
editors. Spatial modeling of forest landscape change: approaches and applications. Cambridge 
University Press, Cambridge, UK. 

Urban, D. L., R. V. O'Neill, and H. H. Shugart. 1987. Landscape ecology: a hierarchical perspective can 
help scientists understand spatial patterns. Bioscience 37:119-127. 

Weller, D. E. 1987. A reevaluation of the -312 power rule of plant self-thinning. Ecological Monographs 
57:23-43. 

West, G. B., J. H. Brown, and B. J. Enquist. 1997. A general model for the origin of allometric scaling 
laws in biology. Science 276: 122-126. 

Whittaker, R. J., K. J. Willis, and R. Field. 2001. Scale and species richness: towards a general, 
hierarchical theory of species diversity. Journal of Biogeography 28:453-470. 

Wilby, R. L., T. M. L. Wigley, D. Conway, P. D. Jones, B. C. Hewitson, J. Main, and D. S. Wilks. 1998. 
Statistical downscaling of general circulation model output: a comparison of methods. Water 
Resources Research 34:2995-3008. 

Wilson, K. G. 1975. Renormalization group methods. Advances in Mathematics 16:170-186. 
Woldenberg, M. J. 1969. Spatial order in fluvial systems: Horton's laws derived from mixed hexagonal 

hierarchies of drainage basin areas. Geological Society of America Bulletin 80:97-112. 
Wood, E. F. 1998. Scale analyses for land-surface hydrology. Pages 1-29 in G. Sposito, editor. Scale 

~ependence and Scale Invariance in Hydrology. Cambridge University Press, Cambridge. 
Woodmansee, R. G. 1990. Biogeochemical cycles and ecological hierarchies. Pages 57-71 in I. S. 

Zonneveld and R. T. T. Forman, editors. Changing Landscapes: An Ecological Perspective. Springer- 
Verlag, New York. 

Wu, J. 1990. Modelling the energy exchange processes between plant communities and environment. 
Ecological Modelling 5 1 :233-250. 

Wu, J. 1999. Hierarchy and scaling: extrapolating information along a scaling ladder. Canadian Journal of 
Remote Sensing 25:367-380. 

Wu, J. 2004. Effects of changing scale on landscape pattern analysis: scaling relations. Landscape 
Ecology 19: 125-138. 

Wu, J., and J. L. David. 2002. A spatially explicit hierarchical approach to modeling complex ecological 
systems: theory and applications. Ecological Modelling 153:7-26. 

Wu, J., and R. Hobbs. 2002. Key issues and research priorities in landscape ecology: an idiosyncratic 
synthesis. Landscape Ecology 17:355-365. 

Wu, J., and S. A. Levin. 1997. A patch-based spatial modeling approach: conceptual framework and 
simulation scheme. Ecological Modelling 101:325-346. 

Wu, J., and 0. L. Loucks. 1995. From balance-of-nature to hierarchical patch dynamics: a paradigm shift 
in ecology. Quarterly Review of Biology 70:439-466. 

Wu, J., D. Jelinski, M. Luck, and P. Tueller. 2000. Multiscale analysis of landscape heterogeneity. 
Geographic Information Sciences 6:6-19. 

Zeide, B. 1987. Analysis of the 312 power law of self-thinning. Forest Science 33:517-537. 


