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ABSTRACT . An empirical investigation  of stumpage  price
models and optimal harvest policies is conducted for loblolly
pine plantations in the southeastern United States. The
stationarity of monthly and quarterly series of sawtimber
prices is analyzed using a unit root test. The statistical
evidence supports stationary autoregressive  models for the
monthly series and for the quarterly series of opening month
prices. In contrast, the evidence supports a non-stationary
random walk model for the quarterly series of average prices.
This conflicting result is likely an artifact of price averaging.
The properties  of these series significantly affect the forms of
optimal price-dependent harvest rules and expected returns.
Further, the results  have implications for conclusions about
market efficiency and the performance of a fixed rotation age.
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1 . Introduction. Theoretical and numerical investigations of
the stochastic tree-cutting problem have demonstrated the critical
dependence of the optimal harvest rule on the specification of the price
process. In discrete-time, numerical results depend on stationarity.
With stationary price models, optimal harvesting follows a reservation
price policy in which cutting takes place when price is above the
historical average (Norstrtim  [ 1975],  Lohmander [ 1988],  Brazee and
Mendelsohn [1988],  Haight  and Smith [1991]). This type of policy
holds for both single- and multiple- rotation formulations regardless
of fixed costs. With a non-stationary random walk model, optimal
harvesting depends on fixed costs: with none, the policy is a fixed
rotation age; otherwise, the policy is price dependent (Thomson [1992]).
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In continuous time, Clarke and Reed [1989]  show that a fixed rotation
age is optimal when price follows geometric Brownian  motion (i.e., the
logarithm of price grows linearly with additive error), there are no fixed
costs, and there is a single rotation.

There is debate about which price process is appropriate for stumpage
markets. Thomson [1992]  argues for a random walk model in which
the current price contains no information about future  prices (i.e.,
no price autocorrelation). A random walk model is consistent with
an informationally efficient market, (Fama [1970]), which is generally
accepted for most assets. On the other hand, Clarke and Reed [1989]
conjecture that stumpage  markets are not characterized by frictionless,
continuous trading, and thus prices are likely autocorrelated. On this
basis, Clarke and R.eed  model price with a definition of geometric
Brownian  motion that approximates a continuous stochastic process
with autocorrelated errors.

Adding to the debate are mixed results from tests of the efficiency of
stumpage  markets (Washburn and Binkley [1990]). Based on quarterly
and annual series of average prices in the southeastern United States,
these authors accept the hypothesis that stumpage  markets are efficient.
However, with monthly price observations they reject market efficiency
and support the conjecture that short-term prices are autocorrelated.

To provide empirical evidence in support of either stationary or
non-stationary models for stumpage  prices, we analyze series of price
observations using a statistical test for stationarity. Further, we show
that the construction of the price series affects the outcome of the test.
Finally we show, via numerical optimization in a discrete-time setting,
how the choice between stationary and non-stationary price models
together with fixed costs and revenues  affects optimal harvest policies
and expected economic returns.

First, we analyze monthly and quarterly series of loblolly pine
stumpage  prices from the Piedmont region of North Carolina, USA.
Two quarterly series are constructed using opening month prices and
average prices. We analyze a quarterly series of opening month prices
because, compared to the series of average prices, it more accurately
represents how timber sellers sample the market to determine when to
cut. The series are tested for stationarity prior to model estimation.
While the monthly series and the quarterly series of opening month
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prices are stationary  and autoregressive, the series of quarterly average
prices is not. This conflicting result is likely an artifact of price averag-
ing and not an indication of underlying differences in market behavior
depending on the interval of observation.

In the second part, we use numerical optimization to determine
the effects of these price models on optimal harvest policies and to
assess the cost of using the wrong policy. Of particular interest is the
performance of a fixed rotation age, which is optimal in some situations
(Clarke and Reed [1989], Thomson [1992]). The decision model is for a
single rotation: the problem is to choose the optimal clearcut  strategy
for a mid-rotation stand that maximizes its expected present value.
Revenue includes the value of the harvested trees and the value of bare
land, which is independent of price and time and known with certainty.
Optimal strategies are also computed with fixed costs assessed in
each period before clearcut. Although the results are consistent with
previous studies, general conclusions about the behavior of optimal
harvesting in a discrete-time setting await theoretical analyses.

2. Stumpage  price models. Time-series models are developed
using loblolly pine sawtimber prices ($(1988)/mbf,  International) for
the Piedmont region of North Carolina as reported in Timbermart
South. Price observations are available in monthly intervals between
January 1977 and March 1988. Models of logarithms of prices are
developed for the monthly series (135 observations) and for two different
quarterly series, each with 45 observations. The quarterly series of
opening month prices is constructed by sampling the monthly series in
quarterly intervals. The quarterly series of average prices is obtained by
averaging monthly prices in quarterly intervals. Averages are computed
using real prices and then transformed to the logarithmic scale. We use
the logarithmic scale because we assume that the underlying process has
a non-homogeneous variance that is proportional in size to the observed
price. Furthermore, the observations generated with a logarithmic
model are non-negative.

The form of the price model depends on the stationarity of the
underlying stochastic process. The process is said to have weak-form
stationarity if its mean and covariance functions do not depend on
time. If true, the process can be modeled by an equation with fixed
coefficients that can be estimated directly from the observations, which
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should exhibit no regular behavior over time. If the process is not
stationary, it  is more difficult to model, although taking differences in
the prices may produce a stationary process (Box and Jenkins [1970]).

The standard way to determine stationarity is to examine the sam-
ple autocorrelation function (ACF). The ACF for a stationary  series
decreases rapidly as the number  of lags increases. The ACF for each
undifferenced price series shows exponential decay with significant au-
tocorrelations up to five lags. The differenced monthly series has signif-
icant autocorrelations  at lag one; the differenced quarterly series show
no significant autocorrelations. For borderline cases such as these, there
is a question about whether to difference the data.

Said and Dickey [1984]  describe a formal test for stationarity  (see
also Dickey et al. [1986]).  The test is designed to accept, a model for
differenced data unless the undifferenced data present statistically sig-
nificant evidence to  the contrary. The null hypothesis is an autoregres-
sive model for differenced data. Letting q(t), t  = 0,. ,T,  represent a
series of log prices and Aq(t) = q(t) - q(t - l), t  = I,. , T,  represent
the price differences, the null hypothesis is:

HO : aq(t)  = (~(1  + C ojAq(t  - j) + I,
.j = 1

where ~j are coefficients for k: lagged difference terms, I is a nor-
mally distributed random error with zero mean and variance g2, and
E[E(~)E(s)] = 0 for t #  s. Th e alternative is an autoregressive model
for the undifferenced data:

IJI : q(t) = h + 2 b.jq(t -  j) + E(t),
3=1

where bj are coefficients for 1 lagged price terms.

The procedure for testing 110 (the so-called augmented Dickey-Fuller
test) is applied when the order of the autoregression in EJO  is unknown.
The test is performed by estimating the coefficients  in the equation:¦

(t) = b. + b,y(t  - 1) + ~+q(t -  .j)  + c(t).
.f=l
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The null  hypothesis  is  accepted if  the test-stat is t ic  FhI  for & is not
statistically different from zero. The formula for ?,I is the same as the t-
statistic  for ii; however, because the null  hypothesis is a non-stationary
model, the distribution of r,, is not the Student-t distribution even in
the lirnit. Therefore, the probability levels for the t-statistic are not
appropriate for testing the significance of +,,.  Instead, critical values
for ?!,,  are found in Fuller [1976, Table 8.5.2].

The limit theory underlying the test does not specify the order m
for the number of lagged difference terms.  Following the procedure of
Said and Dickey [1984], we fit regressions with ‘m  = 1,  . . . ,5 assuming
that  an autorcgression of order 5 gives a sufficient approximation of
the  data. Then, we use a standard regression F-test  (e.g., Neter
and Wasserman [1974], p.88) to determine whether the  coefficients
for groups of parameters are simultaneously equal to zero. In each of
the augmented Dickey-Fuller tests below, the coefficients for additional
lagged variables are not significantly different from zero and therefore
not included in the regressions. The results of the F-test are consistent
with the results of the Akaike information criteria, which has also been
used to determine the number of lagged difference terms (see Lee and
Siklos [1991]).

2.1 Monthly price model. We begin the investigation by regress-
ing the price difference Aq(t) on 1, q(t - l), Aq(t  - l), which yields:

&j(t) = ,902 - .187q(t  - 1) - .226Aq(t  - 1) with ri2 = .009.

(.286) (.059) (.085)

The numbers in parentheses are standard errors of the coefficients, and
6” is the regression mean square error. Testing Ha, we compute +,l
f o r  61 (-.187/.059  =  -3.17), which is less than the critical value  at
the  .05 probability  level (-2.89) (Fuller [1976, Table 8.5.2])  and thus
significantly different from zero. This is strong evidence against the
null hypothesis.

The next step is to estimate an autoregressive rnodel for the undif-
ferenced data. The partial autocorrelations for the  monthly data are
significant for the first two lags suggesting the second-order model:

q(t) =  ,895 + .589q(t  - 1) + .226q(t  - 2) with 6’ = .009,

(1) (.040) (.085) (.085)
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which has significant coefficients at the .05 probability level (using
standard  t-tests). Additional lags are not significant. Therefore,
statistical evidence supports model (1) for the underlying stochastic
process for the monthly logarithms of prices.

Evidence of autocorrelation in the undifferenced series of the loga-
rithms of monthly prices has implications for long-term forecasts, mar-
ket> efficiency, and optimal harvest policies. Forecasts with model (1)
approach the mean of the series of logarithms of prices regardless of
the level of the most recent price observations. Because current and
past prices are used to predict future prices, model (1) is not consis-
tent, with the necessary condition for an efficient market. As a result,,
the predictive power of past prices may be used to construct adaptive
harvest policies that time timber harvests to periods of high prices and
thus increase the likelihood of higher returns.

2.2 Quarterly model of opening month prices. Similar to the
monthly price series, there is strong evidence against the null hypothesis
for the quarterly series of opening month prices. R,egressing  As(t)  on
l,q(t - 1) yields:

Ae(t)  = - 1.815  .378q(t -  1) with (i2 = ,015.

(.579)  (.120)

Testing Ho,  we compute fP  for & (-.378/.120  = -3.15), which is less
than the critical value at, the .05 probability level (-2.95) (Fuller [1976,
Table 8.5.2])  and thus significantly different from zero. Quarterly series
of second or third month prices produce the same results.

The alternative is an autoregressive model for the undifferenced data.
The partial autocorrelations are significant for the first lag suggesting
the first-order model:

i(t) = 1.813 + .623q(t  - 1) with cY2 = .015,

(2) (.046) (.120)

which has significant coefficients at the .05 probability level (using
standard t-tests). Additional lags are not significant. Therefore,
statistical evidence supports model (2) for the underlying stochastic
process for the quarterly series of opening month prices.
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2.3 Quarterly model of average prices. In contrast to quarterly
series of opening month prices, the statistical evidence for the series
of quarterly average prices supports the null hypothesis. Regressing
Aq(t) on l,q(t  - 1) yields:

AG(t) = ,995 - .206q(t  - 1) with (i2 = ,007.

(.454)  (.094)

Test ing Ho, we compute ?,l  for &I (-.206/.094  = -2.19), which is
greater than the critical value at the .05 probability level (-2.95) (Fuller
[1976,  Table 8.5.2])  and thus not significantly different from zero.

The next step is to test whether the drift parameter is significant.
Regressing Aq(t) on 1 yields:

Aij(t)  = - .OOl with ri2 = .007.

(.015)

The constant is not significant at the .05 level (using a standard t-
test). Therefore, the statistical evidence supports a random walk model
without drift for the quarterly series of average prices:

(3) Q(t  + 1) = q(t) + I with Cr2  = .007.

The random walk model (3) h a s forecasting properties that are
qualitatively different from those of autoregressive models (1) and (2).
A one-period forecast with the random walk model depends only on
the observed price in period t: G(t  + 1) = E[q(t  + / 1)  q(t),q(t  -
l), . . . ,q(O)l = q(t).  L ki ewise, the k-period forecast depends only on
the current price: y’(t  + k) = q(t). Therefore, all past information
about stumpage  price cannot be used to produce a better estimate of
the future price than the capitalized current price. The implication for
optimal harvesting is that no gain in value can be obtained from using
past price movements to play the market in timing timber harvests.
This property is consistent with a necessary condition for an efficient
market.

We emphasize that the underlying stochastic processes for the two
quarterly series depend on how the monthly series is sampled. When
the monthly series is sampled at quarterly intervals, the resulting series
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of opening month prices is autoregressive (equation 2), similar to the
monthly series. When the monthly series is averaged in quarterly
intervals, the resulting series is a random walk (equation 3). In Section
5 we suggest that  the statistical evidence supporting a random walk for
the series of quarterly averages is an artifact, of averaging the monthly
series of autocorrelated prices. Before we get to this discussion, we
present, numerical results that show how the forms of these price models
affect optimal tree-cutting policies.

3. Dynamic programming formulation. Similar  to the dynamic
programrning model described by NorstrGrn [1975], the  following model
assumes  that the stochastic price forecast depends only on the current
price. Thus, the formulation applies to models (2) and (3) for quarterly
prices. It is easily expanded to include an additional price state for the
monthly price model (1).

The state descriptor is a discrete variable representing the cm-rent
market, state. Let mk(t),  k: = 1,. , n, represent 78 discrete price classes
(in the logarithm scale) at  the beginning of period t, which equals the
age  of the stand. The price model is used to  estimate discrete transition
probabilities Pj,k representing the probability of being in price class j
in period t + 1 given mk(t).

The  revenue R[mk(t)]  ($/ ac o) bt,ained from clearcutting in period t
depends on the current market state. Stand volume  v(t) (mbf/ac)  is
a deterministic function of stand age. Bare land value L ($/ac)  is the
selling price for bare land. The revenue function is:

@m(t)] = exp{mk(t)}v(t)  + I,

For a given bare land value and time horizon T, the optimal harvest
strategy is found by solving a recurrence relation for optimal stand
value. Define Zt  [rnk: (t)] as the expected present value ($/ac)  of the
stand in period t and market state mk:(t).  Assuming that the decision
maker’s real discount  rate is T and the discount, factor is 6 = (I)/(  I+  r),
the recurrence relation for optimal stand  value is:

&[mk(t)]  =  max

{
R[7nk(t)],  f5 x ~j,kZt+l[7Uj(t  + 1)]

j 1
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The maximization problem is the choice between clearcutting and no
action. Clearcutting is optimal when the revenue IZ[n~k(t)]  is greater
than the expected present value of the stand in period t + 1. The
boundary condition in period T assumes that all trees are cut:

Z,[?r&(T)]  = R[rn~(T)].

The recurrence relation for optimal stand value is solved backwards
from period T - 1 using the boundary condition. The recurrence
relation ends in the earliest period in which the stand may be harvested.
The solution is either a clearcut  or no action  decision for each market
state  in each period.

There is an important difference between the horizon T and the
rotation age. The horizon T represents the maximum number of periods
a stand is allowed to grow. If a stand reaches period T, it is clearcut.
Clearcutting may take place in any period t < T. The rotat ion
age depends on the market state and the probability distribution of
future market states. The horizon T may be arbitrarily long; for
computational efficiency it should be long enough that the likelihood
of clearcutting before period T is high.

Optimal harvest strategies for a 30-year-old plantation are deter-
mined by solving the recurrence relation backwards from age 50. Har-
vest revenue is obtained for sawtimber; pulpwood has no value. The
variable for stumpage  price ranges between $3/mbf  and $6/mbf  in
$0.075 intervals in the logarithm scale. Bare land value is $550/ac
and represents the rotation-start present value of an infinite series of
plantations computed using a deterministic stumpage  price equal to
$125/mbf  (  1rea scale). Prices are in 1988 dollars. The discount rate is
4 % .

Monthly and quarterly sawtimber yields (International  mbf/ac)  for
a pure loblolly  pine plantation are predicted with the second degree
polynomial,

v(t) = -16.54 + 1.029t  - 0.005220t2,

where t is stand age. The model is constructed with ordinary least
squares applied to output from the North  Carolina State University
Plantation  Management  Simulator  (Hafley and Buford [1985]). The
simulator is used to predict annual sawtimber yield from a 30-year-old



432 R.G. HAIGHT AND T.P. HOLMES

plantation over a 20-year horizon. At age 30, the plantation has 100
trees/ac  and 100 ft’/ac  basal area. The plantation is on site index
65 (25 year basis) land in the North Carolina Piedmont. The volume
versus age model fits the data with R2 = 0.999; all coefficients  are
significant at the 0.05 level.

4. Optimization results.

4.1 Monthly price model. The statistical evidence supports the
second-order, autoregressive model (1) for monthly price predictions,
and its optimal policy is to harvest when the observed price is greater
than a reservation price that is conditioned on age and last month’s
price (Figure 1). For past prices between $80 and $160/mbf,  reservation
prices are practically the same until age 45 when they diverge and
approach the level of the past price. The areas below the curves contain
the price-age combinations when harvesting should be postponed. The
expected present value (EPV) is $2,277/ac  for the 30-year-old stand.
The expected rotation age is 36 years.

The rationale for the price-dependent cutting policy is as follows.
Stationary autoregressive models produce price paths that fluctuate
around the mean of the historical series. It is better to postpone cutting
when the price is below average because there is a high probability
that a future price will be above average. Conversely, it is better to cut
when price is above average because price is likely to drop in the future.
The fixed land value influences the level of the reservation prices: as
the land value approaches zero, the optimal reservation prices and the
expected rotation age increase. There are numerous examples of price-
dependent cutting policies of this type from numerical studies with
stationary price models (NorstrGm  [1975], Lohmander [1988], Brazee
and Mendelsohn [1988], Haight and Smith [1991]). Outlines for the
proof that reservation price policies are optimal, in general, for discrete-
tirne stationary models are found in Brazee [1987]  and Lohmander
[1988].

For comparison with the performance of the optimal reservation price
policy, we used Monte Carlo simulation to estimate the EPVs  of fixed
rotation ages when the price process is governed by model (1). The
costs of fixed rotation ages are large: the EPV of the optimal rotation
age ($1,832/q  34 years) is 20% less than the EPV of the optimal
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Reservation price ($/Mbf)
400 /

/

30 35 40

Stand age (years)
45 50

FIGURE 1. Optimal reservation prices for harvest decisions on a monthly interval
using the autoregressive model (1).

reservation price policy ($2,277/ac).  The cost is due to not using the
predictive power of the current and past, prices to time the harvest.

4.2 Quarterly model of opening month prices. For the quar-
terly series of opening month prices, the statistical evidence supports
the first-order, autoregressive model (a), and the optimal cutting pol-
icy is similar to reservation price policy for the rnonthly model. The
optimal policy is to harvest when the observed price is greater th,an

an age-dependent reservation price. Reservation prices decrease with
age and approach the mean of the price series ($125/mbf)  (Figure 2).
The area below the curve contains the price-age combinations when
harvesting should be postponed. The expected present value of the
30-year-old  stand is $2,183/ac,  which is 4% less than the EPV of the
optimal policy for the monthly interval. The expected rotation age is
36 years.

Reservation prices for the quarterly model (Figure 2) are lower than
those for the monthly  model (Figure 1) primarily because of the longer
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Reservation price  ($/Mbf)
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300 -
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200 -
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-
40 45 30
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FIGURE 2. Optimal reservation prices for harvest decisions on a quarterly interval
using the autoregressive  model  (2).

time interval between harvest decisions. With fewer chances to evaluate
the  price, it is less likely that higher prices will be encountered.

We used Monte Carlo simulation to estimate  the EPVs  of fixed
rotation ages when the price process is governed by model (2). Similar
to results for the monthly interval, the EPV of the optimal rotation
age ($l,786/ac,  34 years) is 18% less than the EPV of the optimal
reservation price policy ($2,183/ac).

4.3 Quarterly model of average prices. The optimal harvest
policy using the random walk model (3) for the series of quarterly
average prices is different, from those for the autoregressive models.
The optimal policy is to harvest when the observed price 1:s  less th,nn
an age-dependent reservation price. Optimal reservation prices increase
with age (Figure 3); the area above and to the left, of the curve contains
the price-age combinations when harvesting should be postponed.  The
expected rotation  age is 41  years, and for a starting price of $125/mbf,
the EPV of the 30-year-old stand is $l,956/ac.
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3 5 0  -
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3 0 0  -
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2 0 0

150-
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1
35 4 0 4 5 5 0

Stand age (years)

FIGURE 3. Optimal reservation prices for harvest decisions on a quarterly interval
using the random walk model (3).

This price-dependent harvest policy is the result of the properties
of the random walk model and the fixed land value. With a random
walk model, the best estimate of the future price is the current price.
Further, for any current price, there is an equal chance that  price
will rise or fall in the next period. Harvesting is postponed when the
observed price is high because the future price is expected to remain
high and because the value of the growing stock and growth is high
relative to the fixed value of bare land. Conversely, it is better to
harvest when price is low because price is expected to stay low and
because the  value of bare land is greater than the expected return from
growing timber.  Thomson [1992]  produces similar numerical results
for a multiple-rotation harvest problem with fixed costs and a random
walk model for prices.

We used Monte Carlo simulation to estimate  the EPVs  of fixed
rotation ages when the price process is governed by model (3). The
EPV of the optimal rotation age ($1,938/ac,  45 years) is 1% less than
the EPV of the optimal  reservation price policy ($1,956/ac).  The cost
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is small in comparison to the  costs of using fixed rotation ages with the
autoregressive  models  above.  The cost is due  to  not timing the  timber
harvest, according to the levels of the current  price and land  value.

The fixed land value  has an important, impact on the optimal policy.
With  zero land value and no fixed costs,  the optimal  policy is to ignore
price fluctuations and cut  at  a fixed rotation age.  This finding is
consistent with results using a deterministic rotation-age model with no
fixed costs: the price level does  not influence  the optimal  rotation age
(e.g., Clark [1976]). I t  ‘. ,l1s 2 so  consistent with Clarke and Reed’s  [1989]
findings for a continuous-time  cutting problem where price  follows
geometric Brownian  motion.

When timber  sellers obtain bids  that represent, point estimates rather
than averages of stumpage  price  offerings, the  quarterly model of
opening month prices is a better representation of the  stumpage  price
process than the  series of averages. In this  case,  employing the harvest,
policy based  on  the  random walk model will provide suboptimal  returns
when prices are sampled  on a quarterly  interval. The  harvest policy
associated with the  random walk model (3) performs poorly when the
series of quarterly  price observations  follows the  autoregressivc  model
(2). The  EPV  of the random walk policy ($1,520/ac)  is 30% less than
the EPV of the  optimal  policy for the  autoregressive  model ($2,183/ac).

4.4 Information cost. Using  the reservation price  policies for 
monthly  or quarterly intervals requires the  monitoring  of stumpage
prices and a readiness to  complete  a sale  contract. The  cost  of these
activities  may affect  the choice of decision interval. Therefore, we
compute  optimal  policies using fixed costs  (up to  $15/a(:)  that  are
assessed  each   period before  harvest,. While informat8ion  about the:  mst

of price monitoring  is riot readily available, it is probably the  same  order
of magnitude as the  cost of timber cruising, which averaged  between
$2 and  $3/ac  in  different  regions  of the  southern United  States  in 1988.

For the monthly interval,  optimal policies are computed using the
second-order  autoregressive  model  (1). With increasing fixed costs,
the  optimal reservation  prices  and  the  expected rotation  age  decrease.
Harvesting  is acceptable  at  lower  prices in ortlcr  avoid paying the
additional  costs  of price  monitoring. The EPVs  decrease  rapidly arid
approach $1,752/ac,  the  value  of the  30-year-old  stand  cut immediately
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Expected present value ($/ac)

2400  

2200

2000

1800

5 1 0

Periodic cost ($/ac)

(Figure 4). With  a cost of $15/ac,the  expected  rotation age is 30.6
years.

For the  quarterly interval ,  optimal  policies  are  computed  using the
first-order,  autoregressive  model  (2) for opening month  prices.  The
EPVs  arc greater than  those for the monthly  interval  for costs greater
than  about $3/ac (Figure 4). With a cost ,  of $15/ac, the  ctxpcctcd
rotation age  is 32.5 years.
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the optimal rotation age is obtained with the autoregressive rnodel (1)
for the rnonthly interval s  34 years). With monthly costs
less than about $14/ac,  the optimal reservation price policy for the
monthly interval provides higher expected returns. With quarterly
costs less than about $20/ac,  the optimal reservation price policy for
the quarterly interval provides higher returns.

5. Discussion. The statistical results in Section 2 raise the
question of why the stochastic process for the series of quarterly
average prices is a random walk while the series of monthly prices
is autoregressive. The question is important not only because the
forms of the price models affect optimal harvest policies, but also
because the price models are used as evidence for market efficiency. For
example, Washburn and Binkley [1990] used this evidence to conclude
that southern pine stumpage  markets  are efficient when viewed on a
quarterly interval. However, the evidence that the series of quarterly
averages is a random walk may be an artifact of averaging an underlying
series of autocorrelated prices. Therefore, conclusions about market
efficiency based on this evidence may be incorrect.

In an analysis of serial  correlation, it  is important to consider the
impact of the sampling design on the characteristics of the stochastic
process. In particular, we are concerned with the implications of
averaging an input series on the characteristics of the output series.
Assuming that the input series is a random walk, Working [1960]
demonstrates that averaging has two important effects on the  filtered
output series. First, averaging reduces the variance of first differences.
Second, averaging induces a spurious first-order serial correlation of
first differences of about 0.25. Therefore, when using averaged data,
evidence in support of an underlying random walk process should
include a test of the  hypothesis that first-order serial correlation of
first differences is not significantly different than 0.25. The evidence
from the series of quarterly average prices for North  Carolina supports
this hypothesis.

Washburn and Binkley include this test, in their analysis of market
efficiency. They construct models for the rational expectations  equilib-
rium for stumpage  markets and analyze time series of differences be-
tween actual and predicted equilibrium rates of stumpage  price change.
Because period averages are used to calculate rates of price change, the
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null hypothesis of no serial dependence, and weak-form market effi-
ciency, is a correlation coefficient of 0.25 at the first lag and 0.0 at all
further lags. Washburn and Binkley accept the null hypothesis using
the quarterly average price data.

Alternatively, the error structures for our time-series model and
Washburn and Binkley’s equilibrium market model based on quarterly
average data may have resulted frorn an underlying autoregressive price
process. In the Appendix, we provide a heuristic proof of the proposi-
tion that averaging a stochastic process with positive autocorrelation
transforms  the series so that it behaves approximately like the original
series but with a larger autoregressive coefficient b, . Averaging in this
case preserves random shocks at a rate that exceeds the exponential
decay evident in the original series. By increasing the value of bl  and
decreasing the degrees of freedom, averaging a monthly series may cre-
ate a filtered series that appears to follow a random walk. If the error
structures in our time-series model and  Washburn and Binkley’s mar-
ket model could have resulted from averaging either an autoregressive
series or a random walk, then conclusions about market efficiency based
on these models may be incorrect.

In any case, we believe that timber sellers sample the spot, or cash
market at  periodic intervals to determine when to cut, rather than
sampling an average market. Consequently, a quarterly series of open-
ing month prices provides a more realistic sampling for constructing a
model of quarterly price movements  and for determining optimal har-
vest policies.

Since monthly stumpage  prices used in our analysis may represent
an average over some higher frequency of price generation, we are
concerned that our finding of significant first-order serial correlation
in the rate of price change may be spurious. For the monthly North
Carolina data, the serial correlation is negative and significantly less
than 0.25. Combined with the results of the unit root test, we conclude
that the underlying price generation process, which occurs at a higher-
than-monthly frequency, is not a random walk.

Is it realistic to conclude that monthly stumpage  markets operate
with positive feedback? Although a full portrayal of tirnber market
behavior is beyond the scope of this paper, we conjecture that the
positive feedback is due to sluggishness in supply response. Time lags of
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weeks to months can occur between the point, when the decision is made
to  cut, the  point when the sale contract  is established, and the point
when the timber is cut. In a partial adjustment model (e.g., Nerlove
[1958], the price forecasts governing decisions to cut is the current price,
but the actual cut adjusts slowly to a price change. This sluggish
adjustment  causes prices to monotonically  converge to the  equilibrium
price in  the manner  of a positive  feedback. We note that the same
dynamic price behavior could be observed if timber supply is based on
adaptive expectations that  adjust slowly to new information.

6. Conclusions. Recent  investigations of the stochastic tree cutting
problem disagree about the appropriate price process. Clarke and
Reed [1989]  argue that, in a continuous-time setting,  the price process
should be modeled with a definition of geometric Brownian  motion that
approximates a continuous time process with  autocorrelated errors.
Thomson [1992]  argues that, in a discrete-time setting, a random
walk model is appropriate because stumpage  markets  are efficient
(e.g., Washburn and Binkley [1990]). Our analysis of a monthly
series of lohlolly pine stumpage  prices supports the conjecture that
stumpage  markets are not characterized by frictionless, continuous
trading. autocorrelation  is present in both the monthly series and
the  quarterly series of opening rnonth prices. However, our analysis
shows that the series of quarterly average prices is a non-stationary
random walk. This result is likely au artifact of price averaging and
not an indication of market efficiency.

The empirical question of whether or not stumpage  prices follow
a random walk has important implications for the  optirnal timing of
timber harvests. The optimal policies for the autoregressive models
for monthly and quarterly intervals involve harvesting when price is
above the historical average. In contrast, the optimal policy for the
random walk model of quarterly  average prices is to cut when the price
is low relative to the historical average. Employing such a policy when
the price process is autoregressive  results in  a substantial reduction in
expected  present value.

The question is raised about the performance  of a fixed rotation
age, which is the optimal policy for continuous-time  models with
geometric Brownian  motion and no fixed costs (Clarke and R.eed
[1989]). I n corn/ p arison with a continuous-time setting, discrete time is
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a better representation of harvest decisions due to the time required
to monitor stumpage  prices.  price autocorrelation can he
explicity  included in discrete-time models. In this setting, a fixed
rotation age is inferior to price-dependent harvest rules. A possible
advantage of a fixed rotation age is that costs of price monitoring are
avoided. Our results show that, both monthly and quarterly  price-
dependent, decision rules have higher expected present values than do
fixed rotation ages for the likely range of periodic fixed costs in the
southeastern United States.
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A PPENDIX A

This appendix contains a heuristic proof of the proposition that
averaging a first-order, positive feedback process results in a filtered
series that behaves approximately like the  original series with a larger
autoregressive coefficient. The approximation results from the fact,
that  random shocks decay in a piecewise linear fashion. The resulting
process may not be distinguishable from a random walk. The proof is
based on the  way in which stochastic processes accumulate  random
shocks . By definition, a random walk is a stochastic process that
integrates random shocks over time:

y(t) = ho + y(t - 1) + E(t)

(4) = ho t + y(0)  + 2 E(j),
j=1

where bo  is drift, t  is time, and I ..1s  a random shock. Each random
shock is fully preserved. In contrast,  the random shocks in the first-
order autoregressivc process,

(5)
?/(t) = ho + hy(f -  1) + F(t)

= bo + &((I) + b:--‘E(l)  + . . + hl&(t -  1) + E(t),
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decay in an exponential fashion. Also note that a random walk is an
autoregressive  process of order 1 where bl  =  1.0.

The proof begins by assuming that equation (5) represents the true
price process (e.g., the true monthly price series). Consider a process
that is obtained by averaging m successive items in an autoregressive
series (e.g., let m = 3 for quarterly averages). We wish to compare the
degree to which random shocks are preserved at t =  con, where Q  is a
positive integer. For simplicity, we consider the case where Q  = 1.

Letting y(O)  = E(O),  the equation explaining an observation from the
original series at t = m  can be written:

(6) y(m) = h;LE(O) + h;L-‘c(l) + . . . + blc(rn -  1) + E(m).

From equation (6),  it is seen that the amount of E(O)  preserved at t = m
equals hl;‘~(O).

Now consider the expression for the averaged data at the correspond-
ing tSirne  point:
(7)
y(rrL) =[h;R&(O) + by--’ E(1) +  +  bl&(rn,  - 1 )  + E(m,)]/m+

[b’;“-‘&(0)+hy2 E ( 1 )  + +  b,&(V-2)  +  &(rr-l)]/m  +  +

[hE(O) + &(1)1/m.

From equation (7),  it, is seen that the amount of E(O)  preserved at t =  m
equals [(b;”  + b;“-’  + . + bl)/m]~(O).

It remains to show that

(8) E(O)[b;’ + b;“-’ + . . . + bl]/m  > ~(0)bl;L.

Equation (8) simplifies to

(9) b;’  +  Q2  +  . + by  > m.  - 1.

Note that the left hand side (1.h.s.) - of equation (9) contains m  1
terms. If 0 < hl  < 1, then each term on the l.h.s.  of equation (9) is
greater than  unity, and the proof is complete. Finally, note that a unit
increase in m  increases the l.h.s.  by b: --” while increasing the right
hand side by one unit. Consequently, the impact of averaging increases
bl  as m increases for a series exhibiting positive feedback.
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