
Fast Back-Propagation Learning Using
Steep Activation Functions and Automatic Weight Reinitialization

Tai-Hoon Cho*, Richard

* The Spatial Data Analysis Laboratory
Virginia Polytechnic Institute & State University

Blacksburg, VA 24061

W. Conners*, and Philip A, Araman**

Abstract --- In this paper, several back-propagation (BP)
learning speed-up algorithms that employ the “gain”
parameter, i.e., steepness of the activation function, are
examined. Simulations will show that increasing the gain
seemingly increases the speed of convergence and that these
algorithms can converge faster than the standard BP learning
algorithm on some problems. However, these algorithms
may also suffer from increased instability, Le., they frequently
fail to converge within a finite time. One potential cause
for the instability is an inappropriate choice for the initial
weights. To overcome the instability resulting from this
cause it is proposed that automatic weight reinitialization be
used whenever the convergence speed becomes “very slow”
due to a local minimum or premature saturation. On the
simulations performed BP algorithms with larger Initial gain
(around 2 or 3) and automatic weight reinitialization
converged much faster and were more stable than algorithms
employing the same gain but not, employing automatic weight
reinitialization. The simulations performed involved a diverse
set of problems including exclusive-or (XOR), encoder, and
parity problems.

I. INTRODUCTION

Mutilayer feedforward neural networks [1] are popular
and are being used on a number of different applications.
The standard back-propagation (BP) learning algorithm [1]
is frequently used for training these networks. One major
difficulty in using the standard BP algorithm is that training
typically requires a long learning time. Consequently, a
number of modified algorithms [2,3] have been proposed
to speed up the learning time. However, these modified
methods are usually very complex and often must be
“tuned” to fit a particular application.

Among BP learning speed-up algorithms, those using
the “gain” parameter are among the easiest to implement.
The gain parameter controls the steepness of the activation
function. It has been recently shown that a BP algorithm
using a steeper activation function converges faster than
the standard BP algorithm [4]. (However, it was not
noticed that steeper activation function can cause more
convergence failures as will be shown later.) In this
paper, several learning speed-up algorithms using the “gain”

** Brooks Forest Products Center

1587

Virginia Polytechnic Institute & State University
Blacksburg, VA 24061

parameter, i.e., steepness of the activation function, are
investigated to determine what effect increased gain has
on learning time. It will be shown by simulation that
although these algorithms can converge faster than the
standard BP learning algorithm on some problems, they
can be unstable in convergence, i.e., they frequently fail
to converge within a finite time. One main reason for
this divergence is an inappropriate setting of the initial
weights in the network. To overcome this instability, an
automatic random reinitialization of the weights is proposed
when convergence speed becomes “very slow” due to a
local minimum or premature saturation [5]. BP learning
algorithms with this weight reinitialization and larger initial
gain (around 2 or 3) were found to be much faster and
more stable in convergence than those without weight
reinitialization. The simulations performed included such
diverse benchmark problems as exclusive-or (XOR),
encoder, and parity problems.

II. THE STANDARD BP LEARNING ALGORITHM

A multilayer feedforward artificial neural network [1]
has one output layer and one input layer with one or
more hidden layers. Each layer has a set of units, nodes,
or neurons. It is usually assumed that each layer is fully
connected with an adjacent layer without direct connections
between layers which are not consecutive. Each connection
has a weight.

The input of each unit in a layer (except input layer)
is given by

where netPi is the net input to unit i produced by the
presentation of pattern p, Wij is the weight from unit j to
unit i, and aPj is the output value of unit j for pattern
p. The output of unit i for pattern p is specified by

api = f(netpi)

where f is a semilinear activation function which is
differentiable and nondecreasing.

lSSN# 0-7803-0233-8/91 $1.00©1991 IEEE

The learning of multilayer neural networks is frequently
performed using the well-known back-propagation (BP)
learning algorithm [1]. Details of the derivation of the
rule can be found in [1]. The BP algorithm tries to find
a set of weights that minimizes an overall measure E,
E = ∑ EP, where p indexes over all the patterns in the

P

training set. Ep is defined by

where tPi is the target value (desired output) of output
unit i for pattern p, opi is the actual output of output unit
i produced by presenting input pattern p, and i indexes
over the output units.

The weight update rule typically used in the BP
algorithm [1] is given by

where ∆ pwij is the change to be made to wij following
presentation of pattern p, n represents the n th presentation
of the training set, η is called the learning rate, and α
is called the momentum term that determines the effect
of past weight changes on the current weight changes.
When unit i is an output unit, then δ pi in the above
equation is given by

and when unit i is a hidden unit, then δ pi is given by

Typically, the semilinear function f
logistic function f(x), where

In this case

Hence for an output unit i,

is given by the

and for a hidden unit i,

III. USING ACTIVATION FUNCTIONS WITH “GAIN”

In this section, speed-up learning algorithms are
described that use an activation function with the “gain”
parameter. In general, a sigmoid activation function fi(x)

with gain gi for node i is defined by

Note that this activation function becomes the usual logistic
function if gi = 1. If this activation is used, only updating
formulas for δ pi are changed while others are the same

as the above. Since

δ pi for an output unit i is given by

and δ pi for a hidden unit i is given by

The next problem is how to set or control the gain
parameters to minimize the learning times. Here, three
different schemes for controlling the gain parameters are
considered. Each scheme is described below in detail.

A. SBPk -- Standard Back-Propagation with gain k

In this approach, the gains for all nodes in the network
have the same constant value k, i.e., gi=k for each node
i in the network, during the entire learning process. This
is the simplest of the BP speed-up algorithms that use
the gain parameter.

B. IBP -- Improved Back-propagation [6]

This approach uses one constant gain, g0, for all nodes
in the network as in SBPk until a “learning standstill” is
detected. This “learning standstill” state is defined as
one where connection weights cannot be corrected, even
when the output layer has large error values. It was
reported [6] that a learning standstill occurs when all
output values on one layer are nearly 1 or 0. In the
case of learning standstill, the gain gi at each node i is
reduced from its original value of g0 so that the output
values on any layer are significantly different from 0 and
1. The IBP algorithm is defined by the following.

Step 1. Check if a “serious error” has been detected
in the output layer. A “serious error” is judged as

where α is a constant whose value is usually set to
about 0.5.
Step 2. Evaluate the connection weight change

using

Check to see if

1588

for some preselected constant This is equivalent to
checking whether

Step 3. If the conditions specified in Step 1 and Step
2 are satisfied, a neural network is considered to be
in a learning standstill. In order to evade this state,
gi is reduced by half and all output values for every
layer are computed from the input layer again. The
above steps are repeated until the conditions are not
satisfied.
Step 4. When the conditions are no longer satisfied,
connection weights are updated and the gain parameter
is again set to g0.

C. BPG -- Back-propagation with adaptive Gain [7]

In this method, the gains are updated in a manner
analogous to the way weights are updated using the
standard BP algorithm. That is, in the standard BP
algorithm weight changes are based on In the

BPG algorithm gain changes are based on The
resulting gain update rule is given by

where is the step size of the gains.

IV. AUTOMATIC WEIGHT REINITIALIZATION

In the BP learning algorithms, the initial weights are
usually randomly chosen. These initial weights may
significantly affect the convergence speed of the learning
algorithm. Some initial weights lead to very slow
convergence to a solution or, in the worst case, to
divergence. It will be shown later that, in general, the
BP algorithm using the modified activation function with
gi> 1 converges to a solution much faster than when the
standard logistic activation function (g i= 1) is used.
However, an algorithm using the standard logistic activation
function typically can converge to a solution more
frequently than an algorithm using an activation function
with gi > l.

To help avoid such divergence it is proposed that
random weight reinitialization be used whenever con-
vergence becomes slow. To determine when convergence
to a solution is slow, the sum of the error E is checked
after some number, N, of epochs (50 in the current
implementation) to determine how quickly E is being
reduced. Let Ek denote the E value after k epochs and
Ek+N denote the E value after k+N epochs. If 0 < Ek -
Ek+N < T, where T is some preselected threshold, then
the convergence is considered slow and the weights are
randomly reinitialized.

V. EXPERIMENTAL RESULTS

Two types of experiments were performed. The first
type of experiment attempts to demonstrate how increased
gain can affect both learning speed and stability, The
second type of experiment attempts to show how weight
reinitialization can affect both leaning speed and stability.

For these experiments, a standard set of diverse
benchmark problems were used: exclusive-or (XOR),
encoder, and parity problems [1]. For the XOR problem,
a 2-2-1 network was used. As a notational convention,
let a K-L-M neural network denote a 3-layer neural network
with K input nodes, L hidden nodes, and M output nodes.
Two encoder problems, 4-4 encoder and 8-8 encoder,
were used in this experiment. The function of the N-N
encoder is to map N orthogonal input patterns into N
orthogonal output patterns. In this experiment, both
encoders implemented the identity mapping. The K-L-M
structure used to create the two encoders is N-log 2N-N
where in one instance N = 4 and on the other N = 8. In
the N-bit parity problem, the output value should be 1
if the input pattern contains an odd number of 1‘s and
0 otherwise. This is a very difficult problem because
the most similar patterns (those which differ by a single
bit) require a very different response. An N-N-1
architecture was used for the N-bit parity problem.
Experiments were performed on 3-bit, 4-bit, and 5-bit
parity problems.

During learning, weights are updated after one pattern
is presented. This process is repeated until for each
pattern, the difference between every output value and its
target value is less than 0.1. (Actual target values used
are 0.1 and 0.9 instead of 0 and 1, respectively.) Since
the initial values of weights affect the convergence of a
learning algorithm, it is reasonable to judge each algorithm
by the statistics obtained from multiple runs. In our
experiment, 20 sets of different initial weights were
randomly generated. These weights were used to run
each of the two algorithms on the XOR, encoder, and
parity problems. The initial value of the gain parameter
gi on the BP algorithms was also varied on each problem.
The learning time was measured by the average of the
number of epochs required to reach a solution. For this
average, only runs that reached the solution within 5000
epochs were included. If the solution was not reached
in 5000 epochs, divergence was assumed. Also, a failure
rate of the algorithm was measured by the ratio of the
number of unsuccessful runs to the number of total runs.
An unsuccessful run is one in which after 5000 epochs
a solution still has not been found. In all these experiments,
the momentum term was set to 0.9 for both weights and
gains. The step size of the gains, η g, was set equal to
the learning rate η. One fixed value (0.005) for the
threshold T was used throughout all the experiments.

1589

Tables I - V show the effects of the initial value of
gain gi on the performance of the BP learning algorithms
with gain parameter. Each entry of these table represents
average number of epochs of runs that reached the solution
within 5000 epochs. The number of convergence failure
out of a total 20 runs is shown inside the parentheses.
It is noted that the BP learning algorithm using the
activation function with steeper slant (i.e., larger values
of g i of about 2 or 3) generally converge faster to a
solution. However, it is also notable that more failures
in convergence to solution occurred when the steeper
activation function is used. Table VI shows the effect
of automatic weights reinitialization (initial gain=2) on
the BP learning algorithms for η = 0.1. SBP1 represents
standard BP algorithms with gi = 1 SBP2_A, and IBP_A,
BPG_A represents SBP2, IBP, and BPG algorithms with
initial gain of 2 and automatic weights initializations,
respectively. This table shows that automatic reinitiali-
zation of weights in the BP algorithms greatly improves
the success rate in convergence to solution while still
maintaining much faster speed of learning.

VI. CONCLUSION

In this paper, several learning speed-up algorithms using
the "gain" parameter, i.e., steepness of the activation
function, were investigated to determine the effect of
increase gain on learning time. It was shown by simulation
that although these algorithms can converge faster than
the standard BP learning algorithm on some problems,
they can be unstable in convergence, i.e., they frequently
fail to converge within a finite time. One main reason
for this divergence is inappropriate setting of initial weights
in the network. To overcome this instability, an automatic
random reinitialization of the weights has been proposed
when convergence speed becomes “very slow”. BP learning
algorithms with this weight reinitialization and larger initial
gain (around 2 or 3) were found to be much faster and
more stable in convergence than those without weight
reinitialization.

[1]

[2]

[3]

[4]

REFERENCES

D.E. Rumelhart, G.E. Hinton, and R.J. Williams, “Learning intend
representations by error propagation,” in Parallel Distributed
Processing. Exploration of the Microstructure of Cognition, vol.1:
Foundations, D.E. Rumelhart and J.L. McClelland, Eds. Cam-
bridge, MA: MIT Press, 1986.
S.E. Fahlman, “An empirical study of learning speed in
back-propagation,” Tech, Rep. CMU-CS-88-162, Comp. Sci. Dept.,
Carnegie-Mellon Univ., June 1988.
R.A. Jacobs, “Increased rates of convergence through learning
rate adaption,” Neural Networks, vol.1, pp.295-307, 1988.
Y. Izui and A. Pentland, “Speeding up back propagation,” Proc.
Int. Joint Conf. Neural Networks (Washington, D.C.), vol.I, Jan.
1990, pp.639-642.

1590

[5]

[6]

[7]

Y. Lee, S-H. Oh, M.W. Kim, “The effect of initial weights on
premature saturation in back-propagation learning,” Proc. Int. J.
Conf. Neural Networks, Seattle, WA, July 1991, vol.I, pp.765-770.
K. Yamada, H. Kami, J. Tsukumo, and T. Temma, “Handwritten
numeral recognition by multi-layered neural network with improved
1earning algorithm,” Proc. Int. J. Conf. Neural Networks,
Washington, DC, June 18-22, 1989, vol.II, pp.259-266.
J.K. Kruschke and J.R. Movellan, "Benefits of gains: speeded
learning and minimal hidden layers in back-propagation networks,”
IEEE Trans. System, Man, and Cybernetics, vol.21, pp.273-280,
1991.

TABLE I
Average Epochs for XOR

TABLE III
Average Epochs for Encoder 8-8

η = 0.05
Initial Gain SBPk IBP BPG

η = 0.05
Initial Gain SBPk IBP BPG

1 1659 (3) 1678 (3) 1004 (3)
2 317 (6) 317 (6) 274 (3)
3 310 (6) 303 (5) 327 (6)
4 323 (7) 317 (6) 116 (10)

1 1526 (0) 1526 (0) 291 (0)
2 400 (0) 392 (0) 210 (0)
3 221 (0) 188 (0) 224 (0)
4 555 (0) 176 (0) 435 (0)

η = 0.1
Initial Gain SBPk IBP BPG

η = 0.1
Initial Gain SBPk IBP BPG

1 859 (2) 871 (2) 499 (4)
2 164 (6) 202 (5) 193 (3)
3 227 (4) 222 (3) 104 (7)
4 94 (7) 94 (6) 119 (9)

1 826 (0) 826 (0) 158 (0)
2 208 (0) 195 (0) 124 (0)
3 318 (0) 97 (0) 186 (1)
4 1151 (6) 110 (0) 1205 (4)

η = 0.25
Initial Gain SBPk IBP BPG

η = 0.25
Initial Gain SBPk IBP BPG

1 356 (3) 365 (3) 512 (5)
2 71 (5) 73 (4) 90 (7)
3 81 (4) 88 (3) 382 (7)
4 421 (7) 297 (4) 228 (12)

1 332 (0) 332 (0) 101 (0)
2 221 (0) 97 (0) 152 (0)
3 1184 (13) 240 (5) 581 (13)
4 - (20) 99 (18) - (20)

TABLE II
Average Epochs for Encoder 4-4

TABLE IV
Average Epochs for Parity 3

η = 0.05
Initial Gain SBPk IBP BPG

η = 0.05
Initial Gain SBPk IBP BPG

1 715 (0) 715 (0) 211 (0)
2 180 (0) 194 (0) 121 (0)
3 110 (0) 108 (0) 95 (0)
4 71 (1) 77 (1) 72 (1)

1 1753 (2) 1753 (2) 1217 (4)
2 680 (0) 574 (0) 277 (2)
3 619 (0) 478 (0) 518 (2)
4 633 (2) 641 (1) 107 (7)

η = 0.1
Initial Gain SBPk IBP BPG

η = 0.1
Initial Gain SBPk IBP BPG

1 360 (0) 360 (0) 116 (0)
2 94 (0) 100 (0) 69 (0)
3 57 (0) 62 (0) 56 (0)
4 108 (1) 80 (0) 74 (1)

1 1132 (0) 1169 (1) 951 (4)
2 348 (0) 286 (0) 158 (2)
3 386 (0) 293 (0) 198 (4)
4 392 (9) 163 (6) 488 (6)

η = 0.25
Initial Gain SBPk IBP BPG

η = 0.25
Initial Gain SBPk IBP BPG

1 148 (0) 148 (0) 60 (0)
2 43 (0) 46 (0) 43 (0)
3 119 (0) 42 (0) 55 (0)
4 272 (14) 131 (6) 714 (8)

1 709 (0) 557 (1) 1391 (3)
2 405 (0) 376 (1) 292 (2)
3 292 (9) 63 (9) 330 (7)
4 25 (19) 455 (12) 57 (11)

1591

TABLE V
Average Epochs for Parity 4

η = 0.05
Initial Gain SBPk IBP BPG

1 2927 (9) 2941 (9) 2381 (11)
2 1576 (9) 1804 (8) 413 (6)
3 1266 (6) 1246 (6) 389 (9)
4 1852 (10) 1016 (10) 842 (9)

η = 0.1
Initial Gain SBPk IBP BPG

1 1613 (12) 1883 (10) 1870 (14)
2 1669 (6) 1376 (5) 674 (7)
3 841 (13) 1299 (11) 283 (11)
4 386 (18) 191 (18) 444 (15)

η = 0.25
Initial Gain SBPk IBP BPG

1 618 (17) 2127 (3) 998 (17)
2 1410 (l0) 267 (13) 607 (12)
3 - (20) 208 (18) 4039 (19)
4 - (20) - (20) - (20)

TABLE VI
The Effect of Steep Activation Function
and Automatic Weights Reinitialization

η =0.1
SBP1 SBP2_A IBP_A BPG_A

XOR 859 (2) 253 (0) 250 (0) 186 (0)
Encoder 4-4 360 (0) 94 (0) 100 (0) 69 (0)
Encoder 8-8 826 (0) 208 (0) 195 (0) 124 (0)
3-bit Parity 1132 (0) 272 (0) 267 (0) 191 (0)
4-bit Parity 1613 (12) 931 (1) 915 (0) 547 (0)
5-bit Parity 3888 (18) 1837 (3) 1722 (1) 1800 (3)

1592

Conference Proceedings

1991 IEEE
International Conference
on
Systems, Man, and Cybernetics

“Decision Aiding for Complex Systems”

October 13-16, 1991

Omni Charlottesville Hotel
and the
University of Virginia
Charlottesville, Virginia

IEEE

Volume 3

91CH3067 - 6

SCHOOL OF

ENGINEERING
& APPLIED SCIENCE

