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Abstract Mangrove forests are highly productive

and have large carbon sinks while also providing

numerous goods and ecosystem services. However,

effective management and conservation of the man-

grove forests are often dependent on spatially explicit

assessments of the resource. Given the remote and

highly dispersed nature of mangroves, estimation of

biomass and carbon in mangroves through routine

field-based inventories represents a challenging task

which is impractical for large-scale planning and

assessment. Alternative approaches based on geospa-

tial technologies are needed to support this estimation

in large areas. However, spatial data processing and

analysis approaches used in this estimation of man-

grove biomass and carbon have not been adequately

investigated. In this study, we present a spatially

explicit analytical framework that integrate remotely

sensed data and spatial analyses approaches to support

the estimation of mangrove biomass and carbon stock

and their spatial patterns in West Africa. Forest

canopy height derived from SRTM and ICESat/GLAS

data was used to estimate mangrove biomass and

carbon in nine West African countries. We developed

a geospatial software toolkit that implemented the

proposed framework. The spatial analysis framework

and software toolkit provide solid support for the

estimation and relative comparisons of mangrove-

related metrics. While the mean canopy height of

mangroves in our study area is 10.2 m, the total

biomass and carbon were estimated as 272.56 and

136.28 Tg. Nigeria has the highest total mangrove

biomass and carbon in the nine countries, but

Cameroon is the country with the largest mean

biomass and carbon density. The resulting spatially

explicit distributions of mangrove biomass and carbon

hold great potential in guiding the strategic planning of

large-scale field-based assessment of mangrove for-

ests. This study demonstrates the utility of online

geospatial data and spatial analysis as a feasible

solution for estimating the distribution of mangrove

biomass and carbon at larger or smaller scales.
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Introduction

Mangrove forests are recognized as highly productive

ecosystems that store large amounts of carbon (Alongi

W. Tang (&) � W. Feng � M. Jia � J. Shi � H. Zuo
Center for Applied Geographic Information Science,

University of North Carolina at Charlotte, Charlotte,

NC 28223, USA

e-mail: WenwuTang@uncc.edu

W. Tang � W. Feng � M. Jia � J. Shi � H. Zuo
Department of Geography and Earth Sciences, University

of North Carolina at Charlotte, Charlotte, NC 28223, USA

C. C. Trettin

Center for Forested Wetlands Research, U.S. Forest

Service, Cordesville, SC 29434, USA

123

Wetlands Ecol Manage

DOI 10.1007/s11273-015-9474-7

http://crossmark.crossref.org/dialog/?doi=10.1007/s11273-015-9474-7&amp;domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/s11273-015-9474-7&amp;domain=pdf


2014; Gilman et al. 2008; Jennerjahn and Ittekkot

2002; Kristensen et al. 2008). However, quantifying

carbon stocks in mangrove forests at a large scale (e.g.,

national, regional, continental) has been precluded by

the lack of national-level forest inventory data. Recent

advances in geospatial technologies including remote

sensing and geographic information systems (GIS; see

Goodchild 1992; Longley 2005), suggest that theymay

be used to provide a first approximation of carbon

pools, and serve as a useful basis for designing field-

based inventories to quantify carbon stocks for

REDD? projects (Angelsen 2009) and carbon-based

markets. Accordingly, our objective was to present a

spatially explicit analytical framework for estimating

the distribution of biomass and carbon stocks of

mangroves using available geographically referenced

data and GIS-based spatial analyses in West Africa,

specifically along the Atlantic coast from Guinea to

Cameroon.

Large scale assessment of mangrove biomass and

carbon stocks requires information about the distribu-

tion of the mangroves on the landscape and structural

characteristics of the forest. However, mangroves are

usually located in inaccessible and difficult working

environments, posing a distinct challenge for conduct-

ing field-based assessments (Dittmar et al. 2006;

Fatoyinbo and Simard 2013). Remote sensing, primar-

ily usingLandsat, has been used since the late 1990’s to

assess the globalmangrove areawith estimates ranging

from 110,000 to 240,000 km2 (Dahdouh-Guebas et al.

2000, 2002; FAO 2007; Kovacs et al. 2001;Wilkie and

Fortuna 2003). More recently, Giri et al. (2011)

utilized the Global Land Survey data from the US

Geological Survey (USGS) and a hybrid approach that

combined supervised and unsupervised classification

of Landsat data to map the distribution of mangrove

forests, concluding with a global mangrove area of

137,760 km2. This data is readily available from the

USGS (see http://marine-portal.unepwcmc-001.vm.

brightbox.net/datasets/21), and serves as the current

bench mark for large scale assessments of mangroves.

The structural assessment of mangroves needs

support from sensors that can penetrate the forest

canopy and return information about canopy relative

to the land surface (e.g., Lidar, radar). Simard et al.

(2006) used Shuttle Radar Topography Mission

(SRTM; see SRTM 2015; http://www2.jpl.nasa.gov/

srtm/) and the Ice, Cloud, and land Elevation Satellite/

Geoscience Laser Altimeter System (ICESat/GLAS;

see ICESAT 2015) data to estimate canopy height of

mangroves in the Everglades National Park in south

Florida and Columbia, which was in turn processed

using relationships derived from Day et al. (1987),

Fromard et al. (1998), and Smith and Whelan (2006).

Subsequently, three dimensional structure and bio-

mass of mangrove forests were assessed and mapped

using SRTM and ICESat/GLAS data (Fatoyinbo and

Simard 2013; Fatoyinbo et al. 2008; Lucas et al. 2007;

Simard et al. 2006, 2008). At the global scale, the

SRTM (see SRTM 2015; http://www2.jpl.nasa.gov/

srtm/) is the only data source available for estimating

mangrove structure (e.g., canopy height). The SRTM

dataset consists of global-scale elevation data with a

spatial resolution of 90 m 9 90 m, which was col-

lected in February, 2000. Vegetation canopy height

information is included in SRTM data, which allows

estimation of mangrove canopy height with the

assumption that mangroves are observed at sea level

(Fatoyinbo et al. 2008).

The application of SRTM data to estimate

mangrove biomass and carbon was conducted in

Africa, originally in Mozambique (Fatoyinbo et al.

2008) and more recently at a continental scale

(Fatoyinbo and Simard 2013). The SRTM data has

also been used effectively in Mozambique for

designing an inventory of mangrove carbon stocks

for REDD? (Stringer et al. 2015). The utility of the

large-scale SRTM database will be further realized

(in particular, for those regions that are relatively

less studied) if a systematic analytical framework to

guide the derivation of the spatial distribution of

canopy height, biomass, and carbon at regional or

higher scales is available. Thus, in this study, we

present a spatially explicit analytical framework and

software toolkit developed for West Africa, which

may serve as an example for general applicability

for the assessment of mangrove biomass and carbon

in other regions.

Materials and methods

Study area

Our study area includes nine countries on the Atlantic

coast of West Africa, including Guinea, Sierra

Leone, Liberia, Cote d’Ivoire, Ghana, Togo, Benin,

Nigeria, and Cameroon (Fig. 1). The annual average
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temperature of the region is approximately in the range

of 23–31 �C (along the coast; obtained from World

Bank’s Climate Change Knowledge Portal; see www.

worldbank.org/climateportal/). West Africa has dis-

tinct wet and dry seasons due to the interplay between

continental and maritime air masses and the ocean

currents. The annual precipitation ranges from 1000 to

2000 mm (Saenger and Bellan 1995). There are seven

species of mangroves in the region: Acrostichum

aureum, Avicennia germinans, Conocarpus erectus,

Conocarpus erectus, Rhizophora harrisonii, R. man-

gle, and R. racemosa. In addition, an introduced spe-

cies, Nypa fruticans, has been observed inWest Africa

(Beentje and Bandeira 2007).

Fig. 1 Map of canopy heights in Africa (data source: NASA; spatial resolution: 1 km 9 1 km; our study area covers countries from

Guinea to Cameroon)
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Spatially explicit analytical framework

Our estimation of mangrove biomass and carbon in

West Africa is based on a collection of datasets,

including SRTM data, mangrove coverage, and coun-

try boundary (see Table 1). A series of GIS processing

and spatial analysis approaches are needed to estimate

mangrove biomass and carbon based on these datasets.

Thus, we developed this spatially explicit analytical

framework that integrates these data and analytical

approaches to facilitate the estimation of mangrove

biomass and carbon (see Fig. 2). The spatially explicit

analytical framework consists of three modules:

extraction of mangrove canopy heights and area,

refinement of mangrove canopy heights and stratifi-

cation, and estimation of mangrove extent, biomass,

and carbon.

Extraction of mangrove canopy heights and area

The SRTM dataset was obtained from NASA, and the

mangrove coverage datasets from USGS. The SRTM

dataset from NASA includes a collection of GeoTIFF

(GeoTIFF 2015) files covering the nine countries in

our study area. After converting SRTM data to a GIS-

based raster format, these datasets were merged into a

single raster dataset. Then, mangrove canopy heights

can be extracted through overlay analysis of SRTM

and mangrove coverage data (extraction of raster data

using vector-based polygons). The boundary data of

each country were from the Global Administrative

Area (GADM) database (see GADM 2015). The

boundary of our study area was merged from bound-

aries of countries of interest.

The assessment of mangrove area in the nine

countries in our study area is based on the USGS data

of mangrove coverages and country boundaries (see

Fig. 3). Two datasets were available: global mangrove

coverage for the year of 2000 (Giri et al. 2011), and

unpublished USGS data (Personal Communication, G.

Tappin, USGS) for Guinea, Sierra Leone, Liberia,

Ghana, and Benin. The areas were calculated via GIS-

based overlay analysis. Table 2 reports the results of

mangrove area in the nine countries. Once we

extracted mangrove canopy heights from NASA’s

SRTM data through overlay analysis, another version

of mangrove area at the regional level and for each

country can be derived (see NASA2 in Table 2).

Refinement of mangrove canopy heights

and stratification

The value of canopy height ranged from 0 to 255 m in

the extracted mangrove canopy height data; the

exceedingly high values are attributed to an inherent

error rate of approximately 10 % in the calculated data

(M. Simard, personal communication). Thus, refine-

ment needs to be applied on the extracted mangrove

canopy height data to handle those raster cells with

exceedingly high values, while these cells were

ignored in previous studies by Fatoyinbo and Simard

(2013). Figure 4 shows the histogram of mangrove

canopy heights for the entire study area. Accordingly,

we applied a cut-off threshold (corresponding to 32 m)

to further process the canopy height data: cells with

height values less than or equal to 32 m remain

unchanged, while for these cells with height values

above 32 m their heights were replaced with values

estimated using spatial interpolation. Our spatial

Table 1 Summary of original datasets used for the estimation of mangrove biomass and carbon in West Africa

Theme Format Year Scale Source

Canopy height (90 m 9 90 m) Raster TIF 2000 Country SRTM dataset from NASA (http://www2.jpl.nasa.gov/srtm/)

Canopy height (1000 m 9 1000 m) Raster TIF 2005 Global NASA (see http://lidarradar.jpl.nasa.gov/)

Mangrove coverage Shapefile 2000 Global USGS data released in 2011 for the year

of 2000 (Giri et al. 2011)

Mangrove coverage Shapefile 2014a Country Unpublished USGS data by G. Tappin

Country boundary Shapefile 2012 Country Global Administrative Area (GADM) database

(see http://www.gadm.org)

a Unpublished data 2014 for Guinea, Sierra Leone, Liberia, Ghana, Togo, Benin
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interpolation procedures include the following steps.

First, we selected those cells with height values less

than or equal to 32 m, and use them as sample points

for spatial interpolation, with an inverse distance

weighting (IDW) approach (see Burrough and

McDonnell 1998). For the area without sample points

Fig. 2 Spatially explicit analysis framework for the estimation of mangrove biomass and carbon
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in our study region, we used nearest neighboring

sample points to predict height values of these cells.

We applied jackknife-based cross-validation approach

(Tomczak 1998) to find the optimal parameter set for

the spatial interpolation (number of nearest points: 12;

power coefficient on distance: 14.209; minimized root

Fig. 3 Map of mangrove coverage in West Africa (data source: USGS; base map: OpenStreetMap)

Table 2 Summary of area

of mangroves in each

country for USGS and

NASA datasets

USGS 1: USGS data

released in 2011 for the year

of 2000 (see Giri et al.

2011); USGS 2: G. Tappin

unpublished data 2014;

NASA 1: Fatoyinbo and

Simard (2013); NASA 2:

estimates from this study

Country Mangrove area (km2) Difference (km2)

USGS 1 USGS 2 NASA 1 NASA 2 USGS NASA

Benin 39.4 0.2 18 19.2 -39.2 1.2

Cameroon 2124.8 NA 1483 1578.9 NA 95.9

Cote d’Ivoire 42.3 NA 32 35.3 NA 3.3

Ghana 113.0 211.7 76 80.6 98.7 4.6

Guinea 2344.0 2191.1 1889 1804.6 -152.9 -84.4

Liberia 99.8 399.9 189 202.6 300.0 13.6

Nigeria 6179.9 NA 8573 9109.3 NA 536.3

Sierra Leone 1401.0 1899.6 955 1024.6 498.5 69.6

Togo 6.4 26.6 2 2.3 20.2 0.3

Total 11,710.1 NA 13,217 13,897.8 NA 680.8
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mean square error: 2.217). Then, the height value

of cells higher than 32 m in the original dataset

was extracted based on the interpolated surface of

canopy height. Third, the raster grid data of canopy

height were generated by merging cells with correct

height values from the original dataset and those

with interpolated height values. The proportion of

those cells with height values higher than the cut-

off is about 0.8 % (13,770 cells out of 1,605,836

total cells with mangrove coverage) in our canopy

height data. To facilitate the GIS-based data

processing, we merged these raster datasets together

into a single one to represent the canopy height of

the entire study area.

Stratification is often suggested or used in

mangrove studies to better explore the composition

and structure of mangrove forests (see Kauffman

and Donato 2012; Kovacs et al. 2010). For

example, Kovacs et al. (2010) conducted a study

to map mangroves in Mabala and Yelitono, islands

in Guinea. The work of Kovacs et al. (2010) was

based on defining four classes (tall, medium, dwarf

red, and black mangrove) within 10,442 ha man-

grove forests. Our spatial analysis framework

supports the stratification of mangroves based on

canopy heights. According to the statistical distri-

bution of canopy heights in the entire study area,

we classified canopy heights into five classes using

a Jenks natural break method (see Slocum et al.

2009): Class 1: 1–4 m (15.9 % of the entire study

area); Class 2: 5–7 m (24.8 %); Class 3: 8–9 m

(19.4 %); Class 4: 10–13 m (19.3 %); and Class 5:

14–32 m (20.6 %).

Estimation of mangrove extent, biomass,

and carbon

Based on the mangrove area extracted for the entire

study region, the area of mangrove extent can be

further derived by canopy height class and country.

Biomass was estimated based on canopy height using

the allometric equation from Fatoyinbo and Simard

(2013). The allometric equation is a linear regression

model that establishes the relationship between rela-

tive canopy height of GLAS point (rh75; unit: m) and

SRTM DEM height (HSRTM; unit: m):

rh75 ¼ a� HSRTM þ b ð1Þ

where a and b are the slope and intercept correspond-

ingly. To calculate aboveground biomass, Fatoyinbo

and Simard (2013) used a global allometric equation

developed by Saenger and Snedaker (1993) (same

notation used as in Fatoyinbo and Simard (2013)),

which is a function of canopy height:

BH ¼ 10:8� H þ 35 ð2Þ

where BH is mean aboveground biomass (unit:

Mg ha-1); H is canopy height (unit: m).

The mean aboveground biomass of a canopy height

class in the entire study area was calculated by:

BClassID ¼ 1
P

H2ClassID NH

X

H2ClassID
NH � BHð Þ ð3Þ

where BClassID is the mean aboveground biomass for a

specific canopy height class (unit: Mg ha-1); NH is the

number of cells with the canopy height H; BH is the

mean aboveground biomass for canopy height H

Fig. 4 Histogram of

canopy heights for the entire

study area (maximal height

was set to 50 m; cell size:

90 m 9 90 m; height values

of 6 and 22 m are missing in

original data)
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calculated by Eq. 2. Likewise, we calculated mean

aboveground biomass for each country using the

following formula:

BCountryID ¼ 1
P

H2CountryID N
0
H

X

H2CountryID
N 0
H � BH

� �

ð4Þ

where BCountryID is the mean aboveground biomass of a

country (unit: Mg ha-1); N 0
H is the number of cells in

the country with canopy height H; BH is the mean

aboveground biomass for canopy height H calculated

by Eq. 2.

The mean aboveground biomass of each class in

each country was calculated by the following formula:

Fig. 5 Map of discrepancy of mangrove area in West Africa for different data sources (USGS1: USGS data released in 2011 for the

year of 2000; NASA2: estimates from this study)

BClassID
CountryID ¼ 1

P
H 2 CountryID

and H 2 ClassID

N 00
H

X

H 2 CountryID

and H 2 ClassID

N 00
H � BH

� �

ð5Þ
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where BClassID
CountryID is the mean aboveground biomass of a

specific canopy class (class ID: ClassID) in a specific

country (unit: Mg ha-1); N 00
H is the number of cells in

the country with canopy height H; BH is the mean

aboveground biomass for canopy heightH (see Eq. 2).

The total aboveground biomass (unit: Mg) was

calculated by the corresponding mean aboveground

biomass (unit: Mg ha-1) multiplied by the area (unit:

ha). Since we used km2 as the unit for the area, we

need to convert the area to hectare (1 km2 = 100 ha).

The formula for calculating total aboveground bio-

mass is:

TB ¼ c� B� A ð6Þ

where TB is total aboveground biomass (unit: Mg). B

is the corresponding mean aboveground biomass

calculated by Eq. 3–5. A is area (unit: km2). c is a

scaling factor for unit conversion (c = 100.0 ha/km2).

Given aboveground biomass, we estimated below-

ground biomass using the following equation:

Bbg ¼ rba � Bag ð7Þ

where rba is the ratio of belowground biomass

compared to aboveground biomass [38 % in this

study, based on Komiyama et al. (2008)]. Bbg and Bag

are the belowground and aboveground biomass.

Based on the relationship between carbon and

biomass, we estimated the carbon (both below- and

aboveground) using Eq. 8.

C ¼ rcb � B ð8Þ

where rcb is the ratio of above/below ground carbon

compared to above/below ground biomass [50 % in

this study based on Kauffman and Donato (2012)].

C and B are carbon and biomass (unit: Mg).

Implementation

We developed this analysis framework into a GIS-

based toolkit, MangroveCarbon (see https://gis.uncc.

edu/mangrove for its web portal). MangroveCarbon

(current version: 1.0), with support from GIS-based

scientific workflows (Taylor et al. 2014), provides

spatial analysis functionality for the automated esti-

mation of mangrove-related metrics of interest. Man-

groveCarbon 1.0 was developed as a toolbox in ESRI

ArcGIS, a worldwide flagship GIS software platform

(see http://www.esri.com). Users can download the

MangroveCarbon tool (free for noncommercial use)

and apply it into their study regions of interest.

Because procedures for estimation of mangrove bio-

mass and carbon were automated in MangroveCarbon,

users can focus on their mangrove studies instead of

manually assembling the set of GIS or spatial analysis

approaches. Further, input and output data associated

with our study region in West Africa are available

through the web portal of MangroveCarbon to facili-

tate the verification and re-use of these data.

Assessing the effect of scale on biomass

and carbon stocks

The spatially explicit analysis framework discussed

above provides substantial guidance for estimating the

spatial distribution of mangrove-related metrics,

including canopy heights, biomass, and carbon. In

this study, we applied this framework to evaluate the

influence of scale on the estimation of mangrove-

related metrics. Besides using canopy height data with

a spatial resolution of 90 m 9 90 m, we applied a

coarser-resolution canopy height data (available at

global scale; see JPL 2015) to estimate the mangrove

biomass and carbon in our study area. The global

canopy height has a spatial resolution of

1 km 9 1 km, reported by Simard et al. (2011), based

on the spaceborne LiDAR data collected from ICESat

in 2005. To identify mangroves in our study region,

global mangrove coverage data from Giri et al. (2011)

were used. While the spatial resolution of canopy

height data is coarse (1 km 9 1 km), the combination

of global canopy height data (from NASA) and

mangrove coverage (from USGS) provides a mean

of estimating mangrove biomass and carbon at a

global scale, which may offer insight into regional- or

continental-level mangrove studies.

Results and discussion

Mangrove area in West Africa

The total area of mangrove forests in the nine West

African countries ranges from 11,710 to 13,897 km2,

depending on the source data (Table 2). The largest

area of mangrove forests is located in Nigeria with an

area of 9109 km2 (65.5 % of the total area of

mangrove forests in the study area), followed by
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Guinea (13 %), Cameroon (11.4 %), Sierra Leone

(7.4 %), Liberia (1.5 %), Ghana (0.6 %), Cote

d’Ivoire (0.3 %) and Benin (0.1 %). The smallest area

of mangroves at the country level is found in Togo,

where there are only 2 km2 mangrove forests

occupying 0.02 % of the total area of mangroves

among the nine countries.

The mangrove area for the entire study region

estimated from the USGS dataset (see Giri et al. 2011)

is 11,710 km2, 15.7 % smaller than our estimate

which used the NASA dataset. Mangrove area

reported in Fatoyinbo and Simard (2013) is close to

our estimation, showing only a 4.9 % of difference for

the entire study area. Among the 9 countries, Nigeria

had the largest discrepancy (2929 km2) in mangrove

area between our estimate and Giri’s. The country

with the second largest difference of mangrove area is

Cameroon, with a difference of 546 km2 (25.7 % less

in our estimate than that from the USGS dataset of Giri

et al. (2011); much smaller than that in Nigeria).While

the area difference in Togo is the smallest (about

4 km2), it is the second largest percentage difference

(64.5 % of decrease from the dataset of Giri et al.

(2011) to our estimate based on NASA dataset).

Nigeria and Liberia are the two countries in which the

area of mangroves estimated from the USGS dataset is

smaller than our estimate. The mangrove coverage for

Liberia is 100 km2 from the USGS dataset, but it is

Table 3 Average canopy height of mangroves for each

country and the total mangrove area

Country Canopy Height

Average (m) Standard

deviation (m)

Benin 4.5 2.3

Cameroon 16.1 8.2

Cote d’Ivoire 10.7 8.5

Ghana 7.4 6.4

Guinea 7.8 4.2

Liberia 8.6 6.2

Nigeria 9.9 8.7

Sierra Leone 8.4 5.2

Togo 4.7 2.9

Total 10.2 8.2

Data source: NASA

Fig. 6 Map of mangrove height class in West Africa (data source: USGS; base map: OpenStreetMap)
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202 km2 for the NASA dataset from our estimation

(103 % higher).

The occurrence of discrepancy between USGS and

NASA datasets with respect to the presence of

mangroves can be attributed to the use of different

classification algorithms. The classification for esti-

mating mangrove coverage for USGS and NASA

datasets is based on Landsat images (about one

thousand scenes in 2000 in the former and 117 scenes

from 1999 to 2002 used by the latter). Hybrid

supervised and unsupervised classification was used

for the USGS data, and no classification accuracy

information was reported due to their use of qualitative

validation (see Giri et al. 2011). For the NASA dataset,

unsupervised classification was applied and classifi-

cation accuracy was reported as 83 % (see Fatoyinbo

and Simard 2013). The spatial distribution of the

estimation discrepancy regarding the presence of

mangroves is of more interest (see Fig. 5). For

example, the main difference of spatial distributions

of mangroves is located in the southern part of

coastline in Guinea, dominated by USGS data that

show mangroves are present in those regions where

estimation differences exist. For Cameroon, cell-level

estimation differences in mangrove presence (domi-

nated by the presence of mangroves from USGS data)

tend to cluster in the northern and southern parts of the

Cameroon coastline. In Sierra Leone, USGS data

allow for the identification of mangroves in the middle

of its coastline, which is not captured by NASA data.

While Nigeria has the largest estimation difference of

mangrove area, this difference is dominated by the

presence of mangroves in the NASA data. The

mapping of the estimation difference of the mangrove

coverage provides support for identifying the locations

where these differences occur, which facilitates the

analysis and interpretation of estimates of mangrove

coverage.

Canopy height, biomass, and carbon of mangroves

in West Africa

The average canopy height of the entire study area is

10.2 m (Table 3). Cameroon ranks the highest

(16.1 m) and Benin the lowest (4.5 m) in terms of

average canopy height. Maps of spatial distribution of

Fig. 7 Map of the mean aboveground biomass of mangroves for the study area in West Africa (spatial resolution: 90 m 9 90 m; base

map: OpenStreetMap)
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canopy heights are of particular help for evaluating the

spatial structure of mangroves (see Fig. 6). For

example, in Cameroon and Nigeria (especially the

former), mangrove forests are dominated by tall trees

while in Benin short trees are dispersed along the coast

of the country. Correspondingly, biomass and carbon

density in our study area exhibited spatially heteroge-

neous characteristics within and across countries (see

Figs. 7, 8). With support from the spatial analysis

framework, we derived the mean biomass for each

class in the entire study area, for each country, and for

each class in each country (see Tables 4, 5, and 6).

Mangrove canopy height information derived from

NASA SRTM data, as reported in Fatoyinbo and

Simard (2013), is very accurate (with a root mean

square error of 3.55 m) and recommended for man-

grove biomass and carbon studies. Our estimation on

biomass and carbon for the entire study region is about

Fig. 8 Map of the carbon of mangroves for the study area inWest Africa (spatial resolution: 90 m 9 90 m; base map: OpenStreetMap)

Table 4 Above- and below-ground biomass and carbon for canopy height classes in the study region

Class Above-ground Below-ground

Biomass Carbon Biomass Carbon

Mean density

(Mg ha-1)

Total

(Tg)

Mean density

(Mg ha-1)

Total

(Tg)

Mean density

(Mg ha-1)

Total

(Tg)

Mean density

(Mg ha-1)

Total

(Tg)

1 72.3 15.9 36.2 8.0 27.5 6.1 13.7 3.0

2 99.9 34.4 50.0 17.2 38.0 13.1 19.0 6.5

3 126.2 33.9 63.1 17.0 48.0 12.9 24.0 6.5

4 156.1 41.9 78.0 21.0 59.3 15.9 30.0 8.0

5 248.5 71.2 124.2 35.6 94.4 27.1 47.2 13.5

Total 142.1 197.5 71.1 98.8 54.0 75.1 27.0 37.5
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15.02 % higher than that reported in Fatoyinbo and

Simard (2013). This disparity in biomass and carbon

can be attributed to the way that those cells with

exceedingly high canopy height values are handled

and the use of different country boundaries for

mangrove coverage estimation. In Fatoyinbo and

Simard (2013), these cells are excluded from their

analysis but we applied spatial interpolation to

estimate canopy height values of these cells (about

0.8 % in proportion). The contribution of these 0.8 %

cells to our biomass estimation is about 1.36 % (with

respect to NASA’s estimation), which means about

13.64 % of difference in biomass (15.02 %-1.36 %) is

from the estimation of mangrove coverage area. Our

estimation on mangrove coverage for the entire study

region is about 5.15 % higher than that reported by

Fatoyinbo and Simard (2013) mainly due to the use of

different country boundaries because the mangrove

canopy height data is the same as in Fatoyinbo and

Simard (2013). This 5.15 % difference in mangrove

coverage area is propagated to about 13.64 % of

difference in mangrove biomass estimation after the

application of allometric model.

The total aboveground biomass and carbon of

mangrove forests for the entire study area are 197.51

and 98.75 Tg (see Table 7). The total belowground

biomass and carbon of mangroves in the study area are

75.05 and 37.53 Tg, respectively. Consistent with

their total mangrove areas, Nigeria has the highest

total aboveground biomass and carbon of mangroves

(126.04 and 63.02 Tg) and Togo has the lowest total

biomass and carbon of mangroves. The mean canopy

height of mangroves in Cameroon is the largest

(16.12 m), leading to the highest values of mean

biomass and carbon density (204.47 and

102.24 Mg ha-1) in West Africa. In general, the

estimation of spatial patterns of mangrove canopy

heights, biomass, and carbon using online available

geospatial data from remote sensing and GIS is

practically effective, and the spatial analysis frame-

work presented in this article provides efficacious

support for this estimation.

Comparison of coarse- and fine-resolution data

for biomass and carbon estimation

To evaluate the influence of spatial resolution on

biomass and carbon estimation, we derived results of

mangrove area, biomass (mean and total), and carbon

(mean and total) from data at two spatial resolutions

(see Table 8). The fine-resolution provides more detail

about the spatial distribution of mangroves than using

the coarse-resolution data (Fig. 9), and the total

mangrove area for West Africa is 20.16 % lower

when using coarse-resolution data, compared to fine-

resolution data. With respect to mangrove area

estimated by fine-resolution data, the largest differ-

ence between two datasets is in Liberia: 57.06 %,

followed by Nigeria (41.6 %) and Cote d’Ivoire

(37.74 %). Unlike mangrove area, the mean biomass

and carbon of mangroves estimated from the coarse-

resolution data are lower than those from the fine-

Table 5 Mean biomass and carbon density for each country in the study region (unit: Mg ha-1)

Country Above-ground Below-ground

Mean biomass density Mean carbon density Mean biomass density Mean carbon density

NASA 1 NASA 2 NASA 1 NASA 2 NASA 1 NASA 2 NASA 1 NASA 2

Benin 76 83.2 38.0 41.6 28.9 31.6 14.4 15.8

Cameroon 171 204.4 85.5 102.2 65.0 77.7 32.5 38.8

Cote d’Ivoire 124 143.2 62.0 71.6 47.1 54.4 23.6 27.2

Ghana 97 113.1 48.5 56.6 36.9 43 18.4 21.5

Guinea 108 119.2 54.0 59.6 41.0 45.3 20.5 22.7

Liberia 113 125.8 56.5 62.9 42.9 47.8 21.5 23.9

Nigeria 111 138.4 55.5 69.2 42.2 52.6 21.1 26.3

Sierra Leone 112 125.5 56.0 62.7 42.6 47.7 21.3 23.8

Togo 78 85.9 39.0 42.9 29.6 32.6 14.8 16.3

NASA 1: Fatoyinbo and Simard (2013); NASA 2: estimates from this study
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resolution data in each country, especially in Liberia

(63.6 %), Benin (60.18 %), and Cote d’Ivoire

(52.69 %). The total biomass and carbon for the entire

study area estimated from the two datasets are similar.

At the country level, the total biomass and carbon of

mangrove forests in Cote d’Ivoire, Liberia, and

Nigeria obtained from coarse-resolution data are

underestimated with respect to those from fine-reso-

lution data, while they are overestimated in the other 6

countries.

Our analyses results suggest that, with comparison

to the fine-resolution data (90 m 9 90 m), using the

coarse-resolution data (1 km 9 1 km) tends to

overestimate the biomass (mean and total) and carbon

(mean and total) of mangrove forests in our study area.

Yet, the combination of coarse-resolution canopy

height data (from NASA) and mangrove area (from

USGS) provides a feasible and convenient approach

for estimating biomass and carbon of mangroves at

regional or global levels.

Summary

Mangroves are generally recognized for the consider-

able values derived from ecosystem services, which

Table 6 Mean biomass and carbon density of each canopy height class for each country in the study region (total: mean

biomass/carbon density for all canopy heights; unit: Mg ha-1)

Country Benin Cameroon Cote d’Ivoire Ghana Guinea Liberia Nigeria Sierra Leone Togo

Above-ground

Mean biomass density

Class 1 67.3 74.3 67.2 68.9 72.7 70.8 72.6 71.6 68.6

Class 2 97.5 102.3 99.9 97.2 100.2 98.4 99.8 99.1 96.6

Class 3 124.6 127.0 126.8 126.0 126.1 126.1 126.1 126.2 123.4

Class 4 150.4 158.4 157.0 158.1 153.9 157.1 156.0 156.1 155.2

Class 5 204.2 264.4 238.7 230.1 220.2 235.3 244.3 231.2 200.1

Total 83.2 204.5 143.1 113.1 119.2 125.8 138.4 125.5 85.9

Mean carbon density

Class 1 33.6 37.1 33.6 34.4 36.33 35.4 36.3 35.8 34.3

Class 2 48.8 51.2 50.0 48.6 50.1 49.2 49.9 49.5 48.3

Class 3 62.3 63.5 63.4 63.0 63.1 63.1 63.0 63.1 61.7

Class 4 75.2 79.2 78.5 79.0 76.9 78.5 78.0 78.0 77.6

Class 5 102.1 132.2 119.4 115.0 110.1 117.6 122.2 115.6 100.0

Total 41.6 102.2 71.6 56.6 59.6 62.9 69.2 62.7 42.9

Below-ground

Mean biomass density

Class 1 25.6 28.2 25.5 26.2 27.6 26.9 27.6 27.2 26.1

Class 2 37.1 38.9 38.0 36.9 38.1 37.4 37.9 37.6 36.7

Class 3 47.4 48.2 48.2 47.9 47.9 47.9 47.9 48.0 46.9

Class 4 57.1 60.2 59.7 60.1 58.5 59.7 59.3 59.3 59.0

Class 5 77.6 100.5 90.7 87.4 83.7 89.4 92.8 87.9 76.0

Total 31.6 77.7 54.4 43.0 45.3 47.8 52.6 47.7 32.6

Mean carbon density

Class 1 12.8 14.1 12.8 13.01 13.8 13.5 13.8 13.6 13.0

Class 2 18.5 19.4 19.0 18.5 19.0 18.7 19.0 18.8 18.4

Class 3 23.7 24.1 24.1 24.0 24.0 24.0 24.0 24.0 23.5

Class 4 28.6 30.1 29.8 30.0 29.2 29.8 29.6 29.7 29.5

Class 5 38.8 50.2 45.4 43.7 41.8 44.7 46.4 43.9 38.0

Total 15.8 38.8 27.2 21.5 22.7 23.9 26.3 23.8 16.3
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are threatened by sea-level rise, deforestation and

other changes in land use. Accordingly, there is

considerable interest in conservation, restoration and

sustainable use, and in particular capitalizing on the

large carbon stocks that characterize many mangroves

in REDD? or other activities for ecosystem service

projects. However, context is needed to develop

provincial, national or regional projects. Until

recently, only the distribution of mangroves was

readily available globally. With the advent of the

SRTM canopy height data, there exists a global

database that provides structural information about

forested areas, and can be integrated with mangrove

area data to assess the spatial patterns of forest canopy

height. Correspondingly, since forest canopy height is

functionally related to above-ground biomass, the data

can be processed to assess the spatial distribution of

biomass and carbon, as we have shown for West

Africa. The spatially explicit analytical framework

and software toolkit presented in this study provides

systematic support for the efficacious processing and

analysis of these data for the mangrove biomass and

carbon assessment.

This assessment approach provides an effective

basis for relative comparisons of canopy height,

biomass and carbon stocks within for West Africa.

Table 7 Total biomass and carbon of each canopy height class for each country in the study region (total: total biomass/carbon for

all canopy heights; unit: Mg)

Country Benin Cameroon Cote d’Ivoire Ghana Guinea Liberia Nigeria Sierra Leone Togo

Above-ground

Total biomass

Class 1 79,777 239,031 58,206 257,432 2,343,312 409,530 10,650,097 1,900,679 10,302

Class 2 47,738 1,357,900 45,275 150,263 5,692,611 480,997 24,034,928 2,556,648 4474

Class 3 21,877 2,575,596 64,548 88,516 5,919,776 371,172 22,614,218 2,206,931 1693

Class 4 8970 5,844,246 132,804 135,811 5,179,836 555,632 27,108,108 2,801,289 1997

Class 5 1059 22,267,048 205,010 280,318 2,379,654 731,409 41,632,316 3,391,305 1201

Total 159,422 32,283,823 505,845 912,341 21,515,191 2,548,743 126,039,670 12,856,853 19,669

Total carbon

Class 1 39,889 119,516 29,103 128,716 1,171,656 204,765 5,325,049 950,340 5151

Class 2 23,869 678,950 22,638 75,132 2,846,306 240,499 12,017,464 1,278,324 2237

Class 3 10,939 1,287,798 32,274 44,258 2,959,888 185,586 11,307,109 1,103,466 847

Class 4 4485 2,922,123 66,402 67,906 2,589,918 277,816 13,554,054 1,400,645 999

Class 5 530 11,133,524 102,505 140,159 1,189,827 365,705 20,816,158 1,695,653 601

Total 79,711 16,141,912 252,923 456,171 10,757,596 1,274,372 63,019,835 6,428,427 9835

Below-ground

Total biomass

Class 1 30,315 90,832 22,118 97,824 890,459 155,621 4,047,037 722,258 3915

Class 2 18,140 516,002 17,205 57,100 2,163,192 182,779 9,133,273 971,526 1700

Class 3 8313 978,726 24,528 33,636 2,249,515 141,045 8,593,403 838,634 643

Class 4 3409 2,220,813 50,466 51,608 1,968,338 211,140 10,301,081 1,064,490 759

Class 5 402 8,461,478 77,904 106,521 904,269 277,935 15,820,280 1,288,696 456

Total 60,580 12,267,853 192,221 346,690 8,175,773 968,522 47,895,075 4,885,604 7474

Total carbon

Class 1 15,158 45,416 11,059 48,912 445,229 77,811 2,023,518 361,129 1957

Class 2 9070 258,001 8,602 28,550 1,081,596 91,389 4,566,636 485,763 850

Class 3 4157 489,363 12,264 16,818 1,124,757 70,523 4,296,701 419,317 322

Class 4 1704 1,110,407 25,233 25,804 984,169 105,570 5,150,541 532,245 379

Class 5 201 4,230,739 38,952 53,260 452,134 138,968 7,910,140 644,348 228

Total 30,290 6,133,926 96,111 173,345 4,087,886 484,261 23,947,537 2,442,802 3,737
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Fig. 9 Comparison of

coarse- and fine-resolution

canopy heights (using

Cameroon as an example;

a spatial resolution:

1 km 9 1 km;

b 90 m 9 90 m; base map:

OpenStreetMap)
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In this manner, the accuracy of the estimated canopy

height or calculated biomass is not a determining

factor in the utility of the assessment. This type of

analysis is particularly useful in program planning,

strategic assessments, and in developing forest inven-

tory plans, and the application can be at a very large

scale as we have shown for West Africa or it can be

used in designing specific projects. For example, the

spatial distribution of mangrove canopy heights

derived using our spatially explicit analytical frame-

work and software toolkit provided support for

developing a stratified random sampling design to

inventory the carbon stocks in the Zambezi River delta

with an accuracy that was well within IPCC standards

(Stringer et al. 2015). That work suggests that the

spatial patterns of mangrove canopy height can

provide an effective basis for designing field-based

inventories, and likely other applications as noted.

With respect to large-scale assessments, the GIS-

based spatial analyses of SRTM canopy height data

offer an effective approach to estimate the distribution

of biomass and carbon in mangrove forests in nine

West Africa countries from Guinea to Cameroon. The

distribution of forest canopy height across the study

region provided a basis for stratifying the mangrove

area to reflect the spatial variation in forest structure

(e.g., height). To illustrate the application, we used

equal-area classification to segregate the SRTM data

into five classes to support the analysis of spatial

distributions of mangrove forests in West Africa. The

country-level estimates are dependent on the delin-

eation of mangrove area where differences in area

among three data sets used in this study varied by

4.5–220 % due to alternative classification algorithms

and GIS data for country boundaries. Accordingly, it is

important that a common basis for determining the

mangrove distribution be used in any large-scale

assessment, and our study here (including the frame-

work and software toolkit) provides such support.

Since carbon stock estimates of forest vegetation

are driven by biomass, utilizing the SRTM data to

estimate biomass is a convenient means to assessing

the spatial distribution of mangrove biomass within a

region, country or smaller project area. The general

allometric equation to calculate biomass density based

on canopy height of mangroves provides a relative

basis of comparison across the assessment area. The

comparison of data resolution demonstrated that scale

affects the estimated biomass, but as long as the

resolution is consistent for the specific assessments, it

will be adequate for relative comparisons. Accord-

ingly, the accessible NASA and USGS databases

provide an accessible and cost effective basis for

large-scale assessments of mangrove biomass and

carbon stocks.
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