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Abstract—A reduction in variance for estimates of forest area and volume in the state of Connecticut was accomplished by
stratifying FIA ground plots using raw, transformed and classified Landsat Thematic Mapper (TM) imagery. A US Geological
Survey (USGS) Multi-Resolution Landscape Characterization (MRLC) vegetation cover map for Connecticut was used to
produce a forest/non-forest map derived from a classified 1993 TM image. A 1996 TM image was used to provide spectral
reflectance variables for each pixel, including the values for all 6 raw TM bands and several transformed layers: normalized
difference vegetation index (NDVI) and Tasseled Cap brightness, greenness, wetness, and “fourth.” Each pixel in the map
was assigned a value indicating how many surrounding pixels within a 3X3 or 5X5 window were forested. These same
windows were used to calculate, for each pixel, a mean, maximum, minimum, and standard deviation of the raw and
transformed layers. FIA ground plots (1996) were split into percent timberland classes using a “decision tree” algorithm that
recursively determines the most significant variable and the most significant split of that variable. The final set of grouping
criteria was used to statistically stratify a set of FIA ground plots. Results were compared with aerial photo based stratifica-
tion as well as TM derived forest/non-forest stratification.

BACKGROUND
Forest Inventory and Analysis (FIA), a program of the USDA
Forest Service, is responsible for the national forest inven-
tory and monitoring of the United States. Congress man-
dates, through the Forest and Rangeland Renewable
Resources Planning Act of 1974 and the McSweeny-McNary
Forest Research Act of 1928, that FIA continuously deter-
mine the extent, condition, and volume of timber, growth,
and depletions of the Nation’s forest land. In the East, FIA
inventories must meet specified sampling errors: a three-
percent error per one million acres of timberland is the
maximum allowable sampling error for area (Hansen and
others 1992). Until now, FIA has reached this accuracy in
part by statistically stratifying the FIA ground plots using
aerial photos. However, the Agricultural Research, Exten-
sion, and Education Reform Act of 1998 (PL 105–185)
directs all FIA units to change from an inventory frequency
of 10–14 years per state to an annual inventory system that
ground samples 20 percent of each state per year (Gillespie
1999). This new inventory design requires plot stratification
every five years.

OBJECTIVE
The Northeastern FIA unit, responsible for surveying the 13
northeastern states, uses aerial photos from the National
Aerial Photography Program (NAPP) for FIA ground plot
stratification. NAPP currently is on a seven year cycle. The
high cost of additional qualified photo interpreters necessary
to complete aerial photo stratification in all the states on a
five year cycle plus the seven year cycle of NAPP has led to
investigations of the use of satellite imagery to stratify the
ground plots.

The objective of this study was to stratify FIA ground plots
into “percent timberland per plot” classes using variables
objectively selected from a large pool of potentially effective
stratifiers. Selection would be made by a “decision tree”
algorithm that recursively determines the most statistically
significant variable and the partition of that variable with the
highest level of significance. Over one hundred different
images and forest cover maps derived from Landsat TM
scenes, considered strongly correlated with forested
landscapes, were subjected to this decision tree selection
method. Additionally, several non-satellite variables that are
often highly correlated with forest cover were added to the
assemblage of potential stratifiers. An important aspect of
our study was the inclusion of two forest cover maps
classified from Landsat TM and produced by USGS. The
potential cost efficiency of using existing satellite based
forest cover maps to stratify the ground plots generated
much interest in comparing these maps with other products.

This study begins to explore the hypothesis that the
statistically most significant predictor variables for percent
timberland may also be used to successfully stratify the plots
in order to reduce the variance of estimates of total
timberland area and tree volume. The final selection of
predictor variables made by the decision tree algorithm to
group the FIA plots into percent timberland classes was
used to form the strata for a timberland area estimate.
Finally, an important objective of this study was to compare
sampling errors of state level estimates of percent
timberland with other stratification efforts.
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METHOD
Study Area
The state of Connecticut was used for this study because all
the ground plots were located using Global Positioning
System (GPS) and there was a mostly cloud free Landsat
TM scene available that was acquired the same year that
the plots were measured. Additionally, two USGS forest/non-
forest maps are available for the state.

Selection of Predictor Variables
Four different types of landscape level variables were made
available to the decision tree algorithm for use as predictors
for plot level variables: Landsat TM satellite imagery,
including the raw bands and vegetation index images;
Classified forest/non-forest maps derived from Landsat TM
imagery; pixel neighborhood texture maps; and non-satellite
variables (table 1).

Table 1—Landsat TM derived and other predictor variables provided to the decision 
tree algorithm as candidates to predict classes of the response variable, percent 
timberland per plot

Predictor variable
Date of TM 

scene
Source

TM raw images and vegetation indexes: 
All six raw TM bands 8/1996 USGS
Normalized Difference 

Vegetation Index 8/1996 USGS (scene) /NE FIA
Tasseled Cap Transformation-

Brightness, Greenness,
Wetness, Fourth 8/1996 USGS (scene) /NE FIA

TM derived forest/non-forest maps:
Multi-Resolution Landscape

Characterization 
forest map 8/1993 USGS

GAP forest map 8/1993 USGS
Normalized Difference

Vegetation Index
threshold forest map 8/1996 USGS (scene) /NE FIA

Moving window filter images:
3X3 pixel window algorithms for

unclassified variables:
minimum, maximum, mean,
standard deviation 8/1996 USGS (scene) /NE FIA

5X5 pixel window algorithms for
unclassified variables:
minimum, maximum, mean,
standard deviation 8/1996 USGS (scene) /NE FIA

3X3 pixel window algorithm for 
classified variables:
total forested pixels 8/1993&96 USGS (scene) /NE FIA

5X5 pixel window algorithm for 
classified variables:
total forested pixels 8/1996&96 USGS (scene) /NE FIA

Non-TM variables:
Elevation 30m USGS 1:24000 DEM 
Slope 30m USGS 1:24000 DEM
Precipitation 4km PRISM– www.ocs.orst.edu/prism/prism_new.htm
Soil permeability 1km STARTSGO database
Soil bulk density 1km STARTSGO database
Length of roads <1/2km 30m TIGERLINE road file- www.census.gov
Length of roads <1km 30m TIGERLINE road file- www.census.gov



21

Five different images were produced from vegetation index
algorithms applied to all or part of the raw TM bands. There
are a number of algorithms used to extract information such
as; biomass, leaf area index, and percent vegetative ground
cover, which are called Vegetation Indexes (VI). These
algorithms reduce the multiple bands in a TM image to a
single number per pixel that predicts vegetation
characteristics (Jensen 1996). The hypothesis is that forest
cover falls within a certain well-defined region of a given VI
map based on the “brightness” value of pixels. One of the
more common VI’s used is the NDVI, which makes use of
the ratio between reflected near-infrared light and red light
(and others 1973, Larsson 1993). Other VI’s evaluated were
the layers derived from the Tasseled Cap transformation
(Crist and Cicone 1984).

One of the three forest/non-forest maps evaluated was
produced from the NDVI image. Based on our analysis, the
higher the pixel’s brightness value the more likely it was to
cover a forested area on the ground. The NDVI map was
“thresholded” at a certain brightness level whereby all pixels
above this level were classified as forest and those pixels
below that level were classified as non-forest. The threshold
level that provided the most accurate map when compared
with aerial photos was selected for the final NDVI threshold
map.

Forest/non-forest maps were also acquired from Gap
Analysis Program (GAP) and National Land Cover Data
(NLCD) (formerly Multi Resolution Landscape Characteriza-
tion (MRLC)) vegetation cover maps for the Connecticut
study area. Both of these products are sponsored and
coordinated by the USGS and are designed to provide a
map of current land cover types over the U.S (Scott and
Jennings 1998, Jennings 1993). These maps are based on
TM classification and differ from each other and from other
TM images for a variety of possible reasons, including;
differing dates and quality of TM imagery used, different
classification methods applied, differing minimum mapping
unit, and differing definitions of forest land employed.

An evaluation of FIA ground plot geometry and the locational
uncertainty of both TM pixels and plots due to image registr-
ation errors and GPS errors, respectively, suggests that
images which quantify pixel values within a 3X3 or 5X5 pixel
window may be highly correlated with percent timberland
totals for the four subplots that make up an FIA ground plot
(fig. 1). Moving window filters applied to forest/non-forest
maps produce images where the value of each pixel is equal
to the sum of forested pixels within the local pixel neighbor-
hood. Plots stratified with these “filtered” images result in
estimates of timberland with lower variance (Hoppus and
others 2000, Riemann and others 2000). Calculated vari-
ables for the 3X3 and 5X5 moving window filters of the
unclassified images include the minimum, maximum, mean
and standard deviation of the window values.

Elevation, slope, precipitation, soil permeability, soil bulk
density, and the length of roads within 0.5 km and 1.0 km
were also provided as predictor variables for percent timber-
land per plot. They were compared to the satellite based
variables by the decision tree algorithm.

Defining Classes Using the Decision Tree Algorithm
FIA ground plots, measured in 1996 throughout the state of
Connecticut, were split into percent timberland classes using
a “decision tree” algorithm that recursively determines the
most significant predictor variables and the most significant
splits of each variable based on other predictor variables.
The term recursive refers to any mathematical procedure in
which any element is computed systematically from the one
preceding it. The final set of grouping criteria was used to
statistically stratify a somewhat independent set of FIA
ground plots.

The software package used to select significant variables is
based on statistical procedures described in a paper by
Biggs et al 1991. The procedure begins by grouping all
observations of the response (or dependent) variable based
on each of the predictor (or independent) variables available
to the decision tree. Continuous predictable variables are
first partitioned into 10 equal-sized intervals. The classes of
each predictor variable are then recursively combined by
selecting the pair of classes that are most similar based on a
F-test. The most significant of these combined groupings is
then determined. After a Bonferroni adjustment to the
significance level to account for the number of classes for
each variable, these “best” groupings for all predictor
variables are then compared to determine the most signifi-
cant variable. The population of plots is then split according
to the best variable grouping if the significance level p is less
than a predetermined value (p=0.01 for this study).

For example, the continuous response variable, percent
timberland per plot, is first split arbitrarily into 10 classes by
consecutive groups of values of one of the predictor
variables (fig. 2). Each class has nearly equal numbers of

 

Figure 1—The FIA ground plot geometry versus 30m TM pixels. The
plot consists of a cluster of four 0.017 ha subplots. The dark grey
circles represent the area of locational error due to GPS errors. The
larger grey circles represent the potential locational error due to
image registration.
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observations. An F significance test is applied to each
adjacent pair of classes to determine if these groups of the
response variable are statistically different based on a
selected p value of 0.01. Classes found not to be statistically
different are merged (fig. 3). An F significance test, with a
Bonferroni adjustment to account for the number of classes,
for each response variable grouping is used to determine
the most significant predictor variable. The decision tree
selects the predictor variable with the lowest p value for
each generation of classes.

Each class created by the decision tree based on the most
significant predictor variable is also split, if possible, by each
of the remaining predictor variables. The decision tree
algorithm applies the F significance test to this next genera-
tion of classes. This process is repeated for each generation
of classes until the split results in too few observations
(specified by the operator at 10) or the level of significance
is reached.

Building the Stratification Model
Ten random samples of 50 percent of the FIA ground plots in
the state of Connecticut (226 plots) were split into percent
timberland classes by predictor variables using the decision
tree algorithm. The predictor variable selected as the most
significant for the first generation split was noted in each
case. The “filtered” image produced from summing the
forested pixels in a 5X5 moving window applied to the MRLC
forest/non-forest map was the most significant variable for
the first split - six out of ten times. The maximum algorithm
for a 3X3 moving window filter applied to raw TM band three
(red light) was selected twice. The minimum NDVI algorithm
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Figure 2—The decision tree algorithm first splits the continuous response variable into 10 classes of approximately equal size by consecutive
groups of values of each of one of the predictor variables. Here the predictor variable, roads within 1 km, splits the response variable, percent
timberland per plot.

for a 3X3 moving window filter was selected once as was the
3X3 window filter for the MRLC forest cover map.

The most common predictor variable selected for each
generation of splits from the random samples was chosen
for the model. The predictor variable values that defined the
timberland classes were determined by taking an average
from the samples.

The final model was then applied to all the FIA plots in the
state of Connecticut. The chosen predictor variables were
used to group the plots into percent timberland classes or
strata. The total area of the state defined by each of the
strata was calculated and used to weight the plot classes to
estimate the total timberland in the state.

RESULTS
The final decision tree classes of “percent timberland per
plot” were created by two generations of predictor variable
splits. The MRLC forest/non-forest map, filtered by a 5X5
pixel window that counted total forested pixels, was used for
the first generation split. Three of the four classes in the first
generation split were in turn split by images created from
moving window filters. Two of the classes were split by the
brightness values of an image created by applying a
“minimum” 5X5 pixel moving window filter to the NDVI
image. The timberland class defined by the highest numbers
of MRLC forested pixels was split by the image created from
applying a “standard deviation” 5X5 pixel moving window
filter to the raw TM band three (fig. 4). This combination of
predictor variables resulted in an R-squared of 0.61.
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Figure 3—Groups of the response variable are merged when they are found to be statistically similar by
an F-test. Here seven of the original 10 classes of the response variable, percent timberland per plot,
have been merged into three, while only three of the original classes remain unchanged.
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Stratified plot estimates of percent timberland and net cubic
foot volume, using the model classes as the strata, had
smaller sampling errors than estimates stratified by photo-
interpreted timberland/non-timberland plots or any of the
unfiltered forest/non-forest maps produced from classified
TM satellite imagery. The model did not perform as well as
photo plots interpreted for six categories of volume as well
as timberland cover. Finally, the model did not stratify the
plots such that the sampling error was three percent or less
per million acres of timberland: a sampling error of 2.3
percent is required for the approximately 1.6 million acres of
timberland in the state of Connecticut (table 2).

The MRLC forest/non-forest map filtered for total forested
pixels by a 5X5 moving window was selected as the signifi-
cant predictor variable for the first generation split of the
plots, indicating that the USGS product shows promise as a
tool for FIA plot stratification. The fact that nearly all of the
significant predictor variables were based on 3X3 or 5X5
filters indicates that the geometry match between the plots
and the TM pixels requires a measurement of each pixel’s
neighborhood for best results.

CONCLUSION
The decision tree algorithm selected predictor variables that
split the response variable, percent timberland per plot, into
classes capable of producing stratified estimates of total
timberland in the state of Connecticut with less sampling
error than any other satellite based strata tried so far. The
technique is relatively objective and based on a logical
hypothesis that predictor variables that are highly correlated
with ground plot variables should provide useful strata for
population estimates. In any case, without the decision tree
algorithm to look at all the numerous combinations of
predictor variables, this particular set of predictor variables
and class boundary values would have never been selected.
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