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SUMMARY

Both nortality rate and radial growh of high
elevation (>900 m red spruce-Fraser fir forests
of the southern Appal achi ans have experienced
change since approximately 1960. Scientific
interest in a study of these forests have
i ncreased because atnospheric pollution is a
possi bl e cause of the change. Scientists wth
statistical and  bi ol ogi cal expertise
i ndependently analyzed a tree ring data set
collected by the Tennessee Valley Authority and
the National Park Service. The objective of the
anal ysi s was to develop new or inproved
techniques for extracting information from such
data; tree rings represent a natural data storage
system that is one of the few sources of long-
term information for these forests.

Although no definite statements are nmade about
the role of atnospheric deposition in observed
forest decline, the results should contribute to

the success of future research. The four
techni ques enmployed in the study involved: (1) a
dendr ochr onol ogi cal approach  enploying spline

detrending and nultiple regression to study the
effects of «climate on ring width, (2) an
application of fractals to study the dependence
of wvariance on mean ring width over time, (3) an
approach that combined Box-Jenkins nethods and
spatial analysis, and (4) a nethod of studying
time dependence of ring width on climate usSing
the Kalman filter.
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INTRODUCTION

The Institute for Quantitative Studies at the
USDA Forest Service, Southern Forest Experiment
Station, has been engaged in a study of

statistical met hods used in researching
At nospheric Deposition Influences on Forests
(ADIF). The study was funded by the National

Vegetation Survey, which is under the Natie.. 'l
Acid Precipitation Assessment Program (NAPAP).
The study began with a distributed seminar; for
10 weeks articles about ADIF were sent to a
nunber of participants who returned comments each
week. A final report was produced (Kiester and
others 1985) consisting of critiques of past ADIF
studi es, suggestions for additional reading, and
phi | osophy about the type and quality of research
needed in the ADIF area.

The study indicated that tree ring analyses
held promise for the study of ADIF, but further
devel opnment of appropriate statistical nmethods
woul d be useful. Therefore the jdea of
"replicated-statisticians" was enployed. Because
there are several ways to approach a tree ring
analysis, it was probable that allowing a nunber
of individuals to work independently would vyield
some interesting new dendrochronol ogical
t echni ques. Red spruce (Picea rubens Sarg.) was
chosen for this study because’ clains were
previously made that spruce forests were
experiencing unexplained growh declines in both
the Northeast and the South (Hornbeck and Smith
1985; Adams and others 1985). Al though the stidy
was intended to develop statistical methods and
not explanations of growh declines, using this
data allowed for that possibility

This study was a joint endeavor by the USDA
Forest Service, the National Park Service (NPS),
and the Tennessee Valley Authority (TVA).
Funding came from the Forest Service and thé TVA
data from the TVA and NPS, and statistical
anal yses were conducted by the Forest Service.
Agreements were nmade with the followng
scientists to perform analyses and f:rovide
i ndividual reports:

(1) Edward R Cook, Ph.D.
Tree-Ring Laboratory
Lanont - Doherty Geol ogi cal ~ Chservatory
of Columbia University
Pal i sades, New York 10964

(2) Keith Od, Ph.D. and Janice Derr, Ph.D
Department of Managenent Science
Pennsyl vania State University
University Park, PA 16802

(3) Robin A J. Taylor, Ph.D.
Department of Entonol ogy
106 Patterson Building
Pennsyl vania State University
University Park, PA 16802

(4) Paul C. Van Deusen, Ph.D.
Inatitute for Quantitative Studies

Southern Forest Experinent Station
701 Loyola Avenue
New Orleans, LA 70113

Dr. Cook is considered to be one of the |eaders
in the field of dendrochronology, and his
analysis therefore includes the nost currently
accepted techniques. He concluded that there is

evidence of anonalous behavior in the red spruce
forests of the Geat Smoky Muntains and suggests
that this is partly due to warmer summer
tenperatures in recent Yyears. He also states
that the situation in southern red spruce is not
similiar to that in northern red spruce.

Drs. Orxd and Derr performed a spatial analysis
on the data. They concluded that there was a
tendency for ring widths to diminish in recent
years and that there is a strong spatial
dependence in forecast residuals that cannot be
expl ained by geographic or biotic factors alone;
They did not consider climate, which they nentian
could explain some of the remaining spatial
dependence. The analysis performed here is novel
for the field of dendrochronology and may lead to
useful results in the future.

To study the dependence of wvariance on the nean
of the data, Dr. Taylor investigated the use of
"fractals," a term coined to denote fractional
dependence. He concluded that the change in
fractional dinmension over tinme may be due to
successi onal , climatic, or anthropogenic
influences. This technique has not been applied
previously to tree ring data and may show pronise
after further devel opnent.

D.  Van Deusen anal yzed the data using the
Kalman filter technique, which is comonly used
in engineering applications. At the time of this
study, the method had not been used in
dendr ochronol ogy, although scientists in the
Net herlands (Visser 1986) have recently published
a paper on independent applications of the method

to tree rings. The Kalman Filter allowed the
climatic data to be modeled dynamically so that
ita effect over tine could be studied. He
concluded that t hese trees have become
progressively nore sensitive to climate since the

late 1950's. This increased sensitivity may
coincide Wwth insect-caused thinning in the
stands.

A1l the studies concluded that the growh
patterns in these stands have changed in the |ast
20 vyears. The causes of these changes are
uncertain, but the sensitivity of the stand to
climate appears to be increasing. To enhance the
reader's ability to interpret the wvarious
anal yses, the individual reports are prefaced by
a review by FEizabeth Goton and Christopher
Eagar Of the  geographical and bi ol ogi cal
background of the Southern Appal achian Spruce Fir
Forest.

References cited in this section are: Adans,
H.S.; Stephenson, S.L.; Blasing, T.J.; Duvick,
D. N. 1985. Gowh-trend declines of spruce and
fir in md-Appalachian subalpine forest.
Envi ronnent al and Experinental Botany. 25(4):
315- 325. Hornbeck, J.W; Smth, RB. 1985.
Documentation of red spruce growh decline.
Canadi an Journal of Forest Research. 15: 1199-
1201. Kiester, A R; Van Deusen, P.C.; Dell,
T.R. 1985. Status of the _concepts and
methodl ogi es used in the study of the effects of
atmospheric deposition on forests. Internal
report for the National Vegetation Survey of
NAPAP. Visser, H 1986. Analysis, of tree ring
data wusing the Kalman Filter techniques. I AWA
Bulletin n.s., Vol. 7(&) 289-297. Publ i shed at
the Rijksherbarium Netherlands.




Southern Appal achi an Red Spruce--Fraser Fir Forests

Elizabeth Goton and Christopher Eagar

GEOGRAPHICAL AND BIOLOGICAL
BACKGROUND

The southem Appal achian red spruce-Fraser fir*
forests ara found in southwestern Virginia,
west ern Nort h Carol ina, and eastem Tennessee
(fig. 1). Total area of these southern
Appal achian spruce-fir forests is estimted at
26,577 hectares, Wwth 19,755 hectares occurring
within the Geat Snmoky Muntains National Park
( GSMNP) ; Extensive logging and other
disturbances early 4in the 20th century have
reduced the extent of the southem Appal achi an
spruce-fir  forests. Today this forest type
occurs on high-elevation peaks (above 1,370 m) in
islandl i ke patches.

Species’ conposi tion in the southern
Appal achian forests changes with the elevational
gradient. At lower elevations (1,370-1,580 n) in
undi sturbed forests such as those of the Geat
Snoky Mountains, red spruce (Picea rubens Sarg.)
is found in conbi nation wi th northern hardwood
type species: mple (Acer spp.), American beech
(Faeus prandifolia Ehrh.), vyellow birch (Betula

THE BALSAM WOOLY ADELGID

Mbst spruce-fir forests of the southern
Appal achi ans have been recently disturbed by the
extensive nortality of Fraser fir caused by an
introduced insect, the bal sam wool |y adel gid
(Adelges pideme)pest, a native of Europe,
is a tiny insect that feeds on the bark of true
firs (Abies spp.). Fraser fir is quickly killed
by the balsam wool Iy adel gid. Mortality occurs
between 3 and 9 years from the time of initial
infestation, depending on the size and vigor of
the tree (Amman and Speers 1965). Tree death is
caused by the diffusion of conpounds secreted by
the adelgid into the xylem during feeding, which
causes formation of premature heart wood.
Translocation of water and minerals to the crown
are greatly reduced, causing water stress and
eventual death of the tree (Puritch 1971, 1973,
1977, Puritch and Johnson 1971, Puritch and Petty
1971).

The bal sam woolly adelgid was first identified
in North America in 1908 on balsam fir (abies
bal samea) in Miine (Kotinsky 1916). The adelgid

allezhaniensis Britton), eastern hemock (Isuga
candensis (L.) Carr., northern red oak (Quercus
Lubra ) Carolina silverbell (Halesia carolina
L.), and vyellow buckeye (Aesculus octandra
Marsh.). As elevation increases, the fir
component Qains inportance, and forest
conposition changes to predominantly red spruce-
Fraser fir. Red spruce occurs less frequently at
the highest end of the gradient (above 1,890 m,
giving way to essentially pure Fraser fir (abies
fraseri (Pursh) Poir.) stands on mountain tops
(Whittaker 1956). Mountains that were |ogged
during.the early payt of this century and dig not
experience postlogging slash fires are dominated
by Fraser fir. This includes nost of the Black
Mountains, Balsam Muntains, Roan Muntain, and
Mount Rogers.

Red spruce grows larger and lives longer than
Fraser fir, but Fraser fir grows more rapidly and
produces mnore prolific seed crops than red
spruce. Red spruce can live for over 350 years,
grow to 40 meters in height, and have diameters
at breast height (d.b.h.) in excess of 1 nmeter.
Fraser fir seldom lives |onger than 150 years and
attains a maximum height of 25 meters and ¢.b.h,
of 50 centineters. Qosting and Billings (1951)
found five times nmore Fraser fir than red gpruce
seedlings in old-growh stands in the Great grmky
Mount ai ns. Bot h species are extremely shade
tolerant and are capable of resuming normal
growh after 50 years of suppression.

fRed spruce-Fraser fir forests will generally
be referred to as simply spruce-fir forests.

has caused extensive nortality to balsamfir
throughout eastern Canada; however, infestations
have not progressed nore than 80 kilometers
inland from the coast because of extreme inland
winter conditions (Balch 1952, Schooley and
Bryant 1978). The bal sam wool Iy adelgid is not
;f)resent in the northern Appalachian spruce-fir
orest.

The balsam woolly adelgid was detected in the
southern Appal achians on Munt Mtchell, North
Carolina, in 1957 (Speers 1958). Subsequent
surveys revealed that the adel gid had spread
t hroughout the entire 3, 035 hectares of Fraser
fir type in the Black Muntains (Nagel 1959).
H gh nortality of Fraser fir and w despread
adel gi d distribution indicated establishnment
prior to 1957, perhaps as early as 1940. Bal sam
wool |y adel gids were detected in 1962 on Roan
Mountain (Ciesla and Buchanan 1962), and in 1963
infestations were located on Gandfather Muntain
and on Munt Sterling in the GSWMNP.

The adelgid arrived in the Cingman's Done area
of the GSM\P in the early 1970's, and tree
nortality began there in the late 1970's.
Surveys found the adelgid in the Bal sam Muntains
and the nearby Plott Balsams of North Carolina in
1968  (Rauschenberger and Lanbert 1970). The
bal sam wool | y adel gid was not found on Mount
Rogers, Virginia, wuntil 1979; however, subsequent
stem analysis of several trees within the
infested areas revealed adelgid-caused red wood
beginning in 1962 (Lanbert and others 1980) in
the annual rings.

By 1984 and 1985, the balsam woolly adelgid had
caused extensive damage throughout the Black
Mbunt ai ns. Bal sam  Mbunt ai ns, Plott  Bal sans,

Elizabeth Goton is forest bionetrician for the Tennessee Valley Authority,

Norris, TN Christopher Eagar is ecologist for
Gatlinburg, TN

the National Park Service,
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The Red Spruce -Fraser Fir Forest

1 Great Smoky Mtns.

2 Plott Balsam Mtns.

3 Balsam Mtns.

4 Black Mtns.

5 Roan Mtn. + Unaka Mtn.

6 Grandfather Mtn.

/ Long Hope Mtn.

8 Mt. Rogers + Whitetop Mtn.
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Figure 1. --Area covered by the southern Appal achi an red spruce--Fraser fir forests.




Grandfather Muntain, and nost of the Geat Snoky spruce-fir forests of the GSWM\P. The sécond

Mbunt ai ns. Limted use of insecticides at Roan study,  conducted by the Tennessee Valley
Muntain reduced fir nortality in accessible Authority (TVA) in the autumm of 1984,
areas, although nontreated areas experienced established plots throughout the range of the
heavy damage. In the COingman's Dome area of the southern Appal achian spruce-fir type, excluding
GSMNP, adel gi d infestations had caused the GSMNP. Intending to conbine data sets for
significant fir nortality at elevations bel ow future analyses, both agencies collaborated on
1,830 meters and minimal damage gabove this sanpling design in order to ensure that simlar
elevation.  Munt Rogers had suffered the |east data were collected.
Fraser fir nortality of the southern Appalachian Problems of  assessing change in forest
spruce-fir forests. There were isolated, dead productivity pronpted the TVA and NPS to
Fraser fir in areas known to have been infested establish permanent vegetation plots in the
for 23 years, but even Within these areas the southern range of the spruce-fir type. Pl ot
impact of the adelgid was surprisingly |ow establ i shment was also influenced by the need for
Possi bl e expl anat i ons for this anomal ous additional information on stand dynamics in the
condition on Mount Rogers include; a genetic spruce-fir forests. This led to a collaborative
based difference in defense nechanism to adelgid study between the TVA, NPS, and the Forest
infestation of this fir population, a reduction Service. Data collected by the TVA and NPS
in the toxicity of the secretions of the MNount i ncluded tree increment core data and detailed
Rogers adelgid population, or a conbination of plot information.  The tree core data and plot
both possibilities. data were sunmmarized and nade available tO a
nunber of individual researchers for independent
anal ysi s. Plot information included elevation,
RESEARCH AND STUDY ENDEAVORS latitude and longitude, live and dead basal area,
and stand density. Regional climatic data
National Park Service and (monthly averages of precipitation and
Tennessee Valley Authority (tjerrperature since 1933) were also included {in the
ata.

Increased nortality (Siccama and others 1982, Sanpling procedures utilized by the NPS and TVA
Scott and others 1984, Vogel mann and others 1985) were basically the same (table 1). Both agencies
and apparent reductions in radial increment used stratified random sanpling, locating plots
(Adams and others 1985, Bruck 1986, McLaughlin on aerial photographs and topographic maps. Data
and others 1983) in the high-elevation spruce-fir that were collected from the plots included site
forests of the Eastern United States pronpted two characteristic data such as  slope, aspact,
studies in the southern Appalachians. The t opogr aphi ¢ location,  and descriptions of
studies were designed to assess the current understory vegetation. Individual trees were
decline synptons to site characteristics, and synpt onol ogy. Quantitative assessnents were
provide baseline data to monitor future changes made of nortality and regeneration. Increment
in _the forest condition. _ cores were collected from five dom nant or

The first study, conducted by the National Park codoninant trees at each site, TWO cores per

Table |.-Conparison of Tennessee Valley Authority (TVA) and National
Park Service (NPS) spruce-fir sanpling procedures

Vari abl e TVA NPS

Pl ot Location Stratified random Stratified random
(Strata: Elevation (Strata: Elevation,
and dry/wet) topo position,

macro-aspect)

El evation Variable wthin Hel d constant at
strata 4 set strata

Plot Size Crcular, 0.08 ha Square, 0.04 ha

Overstory stand ~ --- -2 o .
dat a+

Site charater- = --= --« L. .-

istic data+
Increment cores Cores taken from five Cores taken from five
dom nant or codoni nant dom nant trees from
trees from outside the within plot, cores
pl ot and extended to not extended to tree
tree center. center.

. +()_verstory stand data and site characteristic data were basically
identical for both TVA and NPS.




The results of the analyses of tree core data
my provide insight into the question of whether
or not the southern Appalachian red spruce and
Fraser fir are experiencing a decline that cannot
be attributed to natural stresses. The plots
established by the NPS and TVA will eontinue to
be reneasured in order to nmonitor future changes
in stand productivity.

Q her Studies

Several studies have wused annual radial
increments from tree cores t0 evaluate changes in
the gromth rate of red spruce and Fraser fir from
several sites in the southern  Appal achians.
These studies indicated an abrupt shift to narrow
growth rings beginning in the late 1960's to
early 1970's (Adams and others 1985, Bruclc 1986,
McLaughlin and others 1983) for red spruce and,

to a lesser extent, for Fraser fir. This
tendency was nore drastic at high elevations
(Adams and others 1985). The annual growth

declines are very simlar in tinming to studies
done in the Northeast, but they are not as
geographically widespread and are less consistent
within a given sanple. Addi tionally, the
analysis of tree ring data is extrenely
conplicated because of the effects of tree age,
stand conpetition, climate, and physiol ogical
responses to stress that may persist for several
years. Therefore the interpretation of these
data has been the subject of considerable
controversy.

Vast differences exist in species’ conposition,
structure, and stand productivity within the
limited extent of the southern spruce-fir. These
differences are a result of climatic disparities
associated with eievational gradi ents, past
managenent  histories, and other sgite-specific
vari abl es. These environnental factors, and the
lack of historical data in the South, preclude
any analysis designed to discover either the
causes of observed declines or even if the
observed declines are abnormal in these forests.
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A Tree Ring Analysis of Red Spruce im the Southernm Appal achi an Mountains

Edward R Cook

I NTRODUCTI ON

A recent analysis of red spruce (Picea rubens
Sarg.) tree ring widths in southern Appal achian
stands has caused concern that the red spruce
forests of the southern Appalachian mountains may
be in an early stage of decline (Adams and others
1985) . Al though many hypot heses have been
generated regarding the cause of the red spruce
decline, no definite answer has yet been found
(McLaughlin 1985). [f the decline in red spruce
ring wdth can be explained by natural effects,
then costly and needless pollution controls may
be avoi ded.

The Tennessee Valley Authority (TVA) and the
National Park Service (NPS) conducted studies on
permanent plots established throughout forests of
the southern Appalachians. Long-tez-m changes in
the conposition and health of the forest were
moni t or ed. Using the data provided by the NPS
and TVA, the objective of ny analysis was to
determine if the recent patterns in the ring
widths indicate an anomalous decline and if this
decline can be explained by natural environnental
factors related to climate. The analyses were
perfornmed on annual tree ring chronol ogies
(Fritts 1976, Cook 1985) developed from the ring
width series of each plot.

TREE RI NG DATA QUALITY GHECK AND STANDARDI ZATI ON

The quality of the data provided by the NPS and
TvA was checked using the COFECHA program of
Hol mes (1983). The program checked for cross-
dating errors, nmeasurement errors, and other ring
width irregularities that might limt the
usability of ring width time series for tree ring
anal ysi s. Because the actual increment cores
were not available for this quality check, the
program output was used to verify cross-dating,
make corrections of dating when possible, and
elimnate ring width series for which no obvious

corrections could be mmde. Approximately 15
percent of the ring width series were either

Edward R Cook is a research scientist gt
Ohservatory in Palisades, New York.

corrected or removed from the data set.
Therefore the nunber of ring width series for
some plots were reduced to as few as three.

After the quality check, the renaining ring
width series of each plot were standardized
(Fritts 1976, Cook 1985) to remove |ong-term
trends in growh associated with tree age, size,
and stand dynamics. The need for standardization
prior to creating a stand-average tree ring
chronology s discussed in detail in Fritts
(1976) and Cook (1987). Because the ring width
series were rarely nore than 100 years long,
negative exponential or |inear regression curves
were used to detrend the series.

However, it was unlikely that this conservative
detrending method woul d remove any anomal ous
decline signal during standardization. After the
growh curve was estimated for each series, the
tree ring indices were computed as:

It = Rt/ Gt

where It equaled the tree ring index, Ry was the
ring width, and G. equaled the growh curve
value, all for year t. Therefore a tree ring
index can be defined as the ratio of the actual
ring width to the expected value as estimated by
Ge. Tree ring indices have a long-term nean of
1.0 and a wvariance that is reasonably tine
stabl e. Thus tree ring indices are stationary
processes that can be averaged into a stand-
average series. After each ring width series was
reduced to index form the tree ring index series
of each plot were averaged into a final tree ring
chronology using the biweight robust  nean
(Mosteller and Tukey 1977) to reduce the
influence of outliers on the conputation of the
mean-val ue function.

STRATI PI CATI ON AND SCREENING OF PLOTS

The TVA and NPS plots were stratified by
elevation into three groups: bel ow 5,400 feet,
5,400 to 6,000 feet, and above 6,000 feet. These
strata reflected a vegetational gradient in the
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mount ai ns. The lowest red spruce stratum was
predomnantly a mixed conifer-hardwods forest
zone, While the strata above 5,400 feet were
within the spruce-fir zone (Wite 1984). The
hi ghest elevational stratum contained the highest
proportion of Fraser fir (Abies fraseri [Pursh]
Poir.) relative to red spruce and was the zone
nmost heavily inpacted by the bal sam woolly
adel gid (Eagar 1984).

The el evational strata also reflécted a
climatic gradient of increasing precipitation and
decreasing tenperature with increasing elevation.
Thus the below-5,400-foot stratum was the warmest-
and driest area and the above-6,000-foot stratum
the coolest and wettest. Additionally, the
hi ghest stratum was envel oped in cl ouds nost
often and the | owest stratum was envel oped in
clouds least often.

The ec¢limatic response of red spruce in the
southern Appal achian Muntains has not been
studied as thoroughly as it has in the northern
Appal achians (Conkey 1979, McLaughlin and others
1987, Cook and others 1987). However, based on
ecological principles, it fis probable that the
role of tenperature wWll increase as a limting
factor in red spruce growh at the elevational
extremes of the species’ range. Precipitation
will also be nore inportant as a liniting factor
at the bel ow5,400-foot plots. Therefore a
gradient in the response of red spruce to climate
should be found that wll correlate well with
some aspect Of the known eclimatic gradient.

The stratification by elevation produced 11 TVA
and 8 NPS plots in the above-6,000-foot stratum
13 TVA and 6 NPS plots in the 5,400- to 6,000-
foot stratum and 24 TVA and 7 NPS plots in the
below-5,400-foot stratum At this stage, some of
the plots were elimnated because of the
shortness of the tree ring chronol ogies. Because
1930 was chosen as an inhitial criterion for the
inclusion of tree ring series in the analyses,
any series beginning after 1930 was elininated.
The year 1930 allowed for the inclusinn of the
large mjority of plots and sinultaneously
provided an adequate time base for the
dendroclimtic  anal yses. A longer tine base
woul d have been better, but it also woul d have
elimnated too many sites. Furthernore, the best
avail able climatic data began in 1931.

After the elimnation of short series, the
sample depth of the 1930 decade was exanined for

each remaining chronol ogy. If the sanple depth
was | argely based on only one increment core in
t hat decade, then that chronology was

elimnated. The reason for this step in the
prelimnary screening was to insure that the 1930
decade would not be unduly affected by poor
replication at some sites.

The final result of the screening was the
selection of 13 plots above 6,000 feet, 15 plots
between 5,400 and 6,000 feet, and 29 plots below
5,400 feet. Eight above-6,000-foot sSeries were
from NPS plots, four were from TVA M. ¥Mitchell,
and one was from TVA Roan Mbuntain. Thus the
above-6,000-foot series conprised 68 percent of
the available plots.  The geographic coverage of
this stratum was obviously limted by the maximum
elevations of the nountains. The 5,400- to
6,000-foot stratum was composed of six NPS plots
and nine TVA plots; these represented 78 percent
of the available plots. The geographic coverage

was much better. Only Roan Mountain and
Srandfather Muntain were not represented. The
below-5,400-foot stratum was composed of 7 NPS
and 22 TVA plots, representing 93 percent of the
available plots. The geographic coverage was
conplete, with all nountains represented.

ADTOREGRESSI VE TIME SERIES MODELI NG

Tree ring series invariably possess some degree
of serial persistence or autocorrelation that is
principally due to physiological preconditioning
within the tree. Therefore the information
contained in a given ring width is sonewhat
determined by past tree growh and vigor.
Typically, the autocorrelation strueture of tree
ring indices can be adequately nodel ed as an
autoregressive process (Cook 1985).  The general
autoregressive (AR) process of order p has the
form (Box and Jenkins 1970):

P
Zt = et + 3 Qizt_i
i

[
where Z. is the observed process for year t, et
equal s an unobserved input or random shock that
does not contain any autocorrelation, and &; the
autoregressive coefficients of the AR(p) process.

In the context of this tree ring analysis, the
Z, were the tree ring indices for a plot. Each
tree ring series was nodeled as an AR(2) for the
common interval 1930-83, The choice of an AR(2)
model was based on previous experience nodeling
longer red spruce chronologies as AR processes.
The common AR persistence structure anong all
plots w thin each stratum was also estimated
using a pooling procedure described in Cook
(1985). Differences between the common AR nodel
and those for the individual series were useful
tools for neasuring the level of autocorrelated
noise in the individual series, which my have
been caused by different stand histories and
disturbance regimes.

For the above-6,000-foot Stratum the common Or
pooled AR coefficients and the percent variance
expl ai ned by autoregression (f&) were: @ =
0.461, @, = 0.284, and RZ = 46.1 percent. For
the 13 individual series, the average statistics
were: @ = 0.566, &) = 0.138, and R? = 47.9
percent, Al though the R2's were sinilar, the AR
coefficients were noticeably different, probably
because of residual trend or trendline lack-of-
fit in the individual series. However, the
simlarity of the R2's suggested that the
differences between the tree ring chronol ogies
were largely random through time. Thus the long-
term di sturbance histories of these plots nmay
have been Sinilar since 1930.

For the 5,400- to 6,000-foot Stratum the
pooled statistics were: & = 0.324, & = 0.177,
and R? = 18.1 percent. For the 15 1ndividual
series, the average statistics are: & = 0.484,
$ = 0.168, and R%Z = 39.1 percent. The pooled
AR(1) coefficient ~and R%Z were considerably
smal | er than the average values for the
i ndividual series. The latter indicated a high
level of autocorrelated noise or out-of-phase
behaviar between series. Therefore  the
disturbance  histories of these plots were
probably nore variable than those in the higher
stratum

For the below5,400-foot stratum the pooled



statistics were: @) = 0.422, @) = 0.124, and R2
= 24.4 percent. For the 29 individual series,
the average statistics were: @ = 0.530, @ =
0.094, and R% = 39.3 percent. tnese statistfcs
were close to those fromthe internmediate
elevation plots and indicated a simlar degree of
nonhonogeneity from plot to plot.

The | ower levels of plot honbgeneity in the
strata bel ow 6,000 feet suggested that these
plots have nore varied disturbance histories. an
exam nation of the individual tinme series from
these plots confirmed this inference. Some oOf
the plots showed ralease patterns early in this
century that were consistent wth |ogging
activity. Gven the much reduced spati al
coverage of the above-6,000-foot PloOts, the
higher |evel of honogeneity anong these plots was
probably related to the lack of interference by
man.

PRI NCl PAL COMPONENTS ANALYSIS (PCA)

Because each chronol ogy was based on a small
sample of trees, the dendroclimatic nodeling of
« sh plot chronology was not considered a viable
appr oach. The results would have been sonewhat
chaotic because of the wvery high level of noise
in each chronol ogy. Therefore the common
variance anong all series within each stratum was
pooled uUsing principal components analysis (PCA)
(Cool ey and Lohnes 1971). In PCA the structure
in the correlation matrix of variables is
transformed into a new set of uncorrelated or
or t hogonal nodes of behavior called
ei genvect ors. Each eigenvector accounts for g
unique proportion of the total variance in the
original data. The first eigenvector associated
with the largest eigenvalue accounts for the
greatest percentage of common variance among all
variables in the Correlation matrix.

Each ei genvector is composed of a number of
| oadings or coefficients equal to the nunber of
original variables in the correlation matrix.
These | oadings, which  nmay be positive or
negative, reflect the relationships bet ween
variables for a specific eigenvector. Frequently
the loadings of the first eigenvector are all
positive or negative, which indicates that the
variables being analyzed al1 behave sinilarly.
Therefore, in this study, the tree ring series at
each elevational stratum could exhibit a common
signal due to climate, disturbance, or pollution.

The loadings of the first eigenvector can also
be used to create a tine series of scores that
reveal how this nost common compenent anong all
series ,behaves through tine. This series of
scores {s simlar to g3 weighted nmean, because
each series 1is weighted by its eigenvector
loading and then summed with the other weighted
series for each Yyear. The weighting schene is
optimal in the sense that no other component can
account for nore of the common variance between
series than the first eigenvector. Consequently,
the scores for each el evati onal stratum shoul d
have a strong common sSignal for dendroclimatic
anal ysis.

The PCA anal yses were done tyice for each
stratum once on the original tree ring indices
and again on the indices after renoving arR(2)
persistence  from each series. Indices are
referred to ag prewhitened after removal of AR(2)
persistence.  For the above-6,000-foot stratum of

8

13 plots, the first eigenvector of the original
tree ring indices accounted for 50.7 percent of
the total variance, while that of the prewhitened
indices accounted for 53.6 percent of 'the
vari ance. Comon  variance increased after
prewhitening because Of a reduction of noise
variance resultant from autoregressive nodeling.
In figure 1, the loadings for this eigenvector
are all positive, indicating an existing common
signal anong all series. The loadings for the
prewhi tened indices were nore uniformy positive
than those of the original indices. This
uniformty indicated that some of the differences
between the original indices were anplified by
the autoregression within those series.

For the 5,400- to 6,000-foot stratum of 15
plots, the first eigenvector of the original tree
ring indices accounted for 34.1 percent of the
variance, while the prewhitened indices accounted
for 45.9 percent. The larger increase in common
variance after prewhitening indicated that these
chronol ogi es were 1less honogeneous than those in
the higher stratum Geater variability in gjite
characteristics and stand histories in this
internediate stratum may have caused the
di fference. Conparing the single series and
pooled autoregression nodels also indicated the
lack of honogeneity between the  chronologies.
However, the more restricted geographic coverage
of the high stratum may be a biasing agent in
this conparison. As before, the eigenvector
loadings (fig. 1) were also nore uniform after
pr ewhi t eni ng.

For the below5,400-foot stratum of 29 plots,
the first eigenvector of the original tree ring
indices accounted for 32.6 percent of the
variance, while that of the prewhitened indices
accounted for 40.7 percent. The magnitude of the
di fference was similar to that of the
intermediate stratum Therefore the |evel of
honogeneity  between plots was simlar, an
i nference also supported by the earlier
autoregressive nodeling results. The eigenvector
loadings (fig. 1) of the prewhitened indices were
also nore uniform than the |oadings of the
original indices.

Cenerally the strength of the common signal
within each stratum was directly correlated with
the elevational gradient. The tree ring patterns
of high plots were nore similar among themselves
than those of the lower plots. Although it may
appear that this result reflected nore limting

growth conditions towards the upper elevational

limt, the bias in the geographic coverage of
_that stratum linits the strength of this
interpretation.

The ei genvector anplitudes or scores of each
stratum are shown in figure 2. The solid line
plots were derived from the orignal tree ring
indices, and the dashed line plots were derived
from the AR(2) prewhitened indices.

The scores derived from the original indices
indicate an overall pattern of bel owaverage

growth at gall plots since about 1966. The
| argest departure was for the above-6,000-foot
plots. The average score since 1966 was -2.65

with a standard error of #0,495, For the 5,400-
to 6,000-foot stratum, the average score was-
1.54 110.522. And, for the bel ow5,400-f oot
stratum the average score was -1.73 f0.638.
These |ong-term departures appeared to exceed the
95-percent significance level using a sinple ¢-
test. However, the wuse of a t-test on
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autocorrelated time series such as these can be
extrenely nisleading. The number of independent
observations and the degrees-of-freedom my be
much less than the nunber indicated by the
avail abl e observations.

One way of avoiding the negative effect of
autocorrelation on the degrees-of-freedom is to
use the scores of the AR(2) prewhitened indices.
By definition, these scores do not have any
significant autocorrelation related to that [evel
of autoregression. In figure 2, the prewhitened
scores indicate a snaller reduction in growth
since 1966 in all series. The post-1965 means
confirmed this. For the above-6,000-foot, 5,400-
to 6,000-foot, and below5,400-foot strata, the
1966 to 1983 means were -1.09 #0.779, -0.42
f0.807, and -0.71 f0.992, respectively. None of
these means passed a t-test at the 95-percent
significance level. Therefore there may have not
been any reduction in growth since 1966. The
decline in the original tree ring indices my be
largely explained by the endogenous
autoregressive persistence of the tree ring data
and the way in which it anplifies the behavior of
the random shocks, eg, which are largely
exogenous to the plots.

The above conclusion was conservative because
the AR coefficients' wused for prewhitening were
based on infornation in both the pre-1966 and
post-1966 time periods. The nethod enployed
mnimzed the probability of a type 1 error
because it assumed that the AR coefficients had
not changed through time despite an intervention
in the et that may have occurred in 1966. Since
an intervention in the e, could have a strong
impact on the estimation of the AR coefficients,
the prewhitening may have removed part of the
response to an intervention had it occurred. In
order to reduce the probability of a type Il
error in these analyses, an alternate nethod of
intervention analysis (Box and Tiao 1975) testing
for the occurrence of an intervention in
autocorrelated time series was used.

INTERVENTION ANALYSI S

Intervention analysis specifically allows for
autocorrelation when testing for the occurence of
an intervention in tinme series. A sinple form of
intervention analysis was used in this study to
test for the occurrence of a decline in the
scores since 1966. The form of the intervention
chosen was a step-function, which is expressed as
[000. ..]from1930 to 1965 and [1 1 1 . ..]
from 1966 to 1983. This step-function gerved as
one of the predictor variables in the analysis.
To account for autocorrelation in each tine
series, the scores for years t-1 and t-2 were
also used as predictors. The nodel used allowed
for both the occurrence of a step reduction in
growth and AR(2) persistence. The intervention
mdel was set up as a mnultiple regression
analysis problem  In each case, only the step-
function and the |ag-1 variable proved to be
statistically significant at the 90-percent |evel
or higher.

In contrast, the lag-2 variable never exceeded
the 60-percent significance level. For this
reason, |ag-2 was not wused in the final nodels.
Al'though one might infer that the previous AR(2)
model s were reasonable only bhecause an

intervention around 1966 changed the system the
timing of the intervention was hypothesized only
after an examination of the data. Thus any
i nferences concerning a change in persistence
structure because of an intervention nust take
into account the a posteriori, nature of these
analyses. This issue will be addressed later, as
it affects significance tests.

The results of the intervention analysis were
as follows:

Stratum AR(1) Step RZ

Above 6,000 ft 0.260™* -0.566*:* 58. 9%
5,400-6,000 ft  0.234" -0.369% 27.6%
Bel ow 5.400 ft 0.360*** -0.275** 28. 8%

*p <0.10, **p <0.05, *** p <0.01

The strength of the step intervention was
directly correlated with elevation. The above-
6,000-foot scores showed the strongest indication
of an intervention in 1966, which resulted in a
steplike reduction in growth. This result was
consistent with the original examnation of the
1966 to 1983 means for these scores. Hovever,
the step-elevation relationship was new. The
high level of persistence in the above-6,000-foot
scores was greatly reduced by the step. In
contrast, the persistence in the |ower strata was
reduced less. The reduction in persistence from
the earlier AR(2) nodeling appears to be
proportional to the strength of the step.

The probability levels of the intervention
analysis were based op am a priori significance
test in each case. Acceptance of these results
would effectively mninmze type Il error at the
expense of type I error, in contrast to the
earlier prewhitening results that mininmized type
I error. Therefore these sets of results served
as useful limts. As noted earlier, there was a
problem in applying a priori significance tests
to a statistical analysis problem that was
principally based on an a posteriori examnation
of the data. Furthernore, the a posteriori
examnation of the scores for an intervention
allowed for 50 possible intervention dates for a
step-function.

Based on probability theory, the probability of
finding a statistically si gni ficant step-
function under such conditions is related to the
a priori significance |level as:

P=1 -(l-P)m

where P is the a posteriori probability level, p
is the a priori probability | evel of the test
being applied, and m is the number of tines the
test could be applied to the data. If this
correction is applied to the probability levels
for the step interventions shown above, only the
above-6000-foot step intervention renains
statistically significant (PF<0.01). The ot her
steps do not even pass the p<0.50 level. This
correction is probably overly severe since the a
priori information about the probable tinming of
red spruce decline in the northern Appalachians
(Johnson and Siccama 1983).

All available evidence indicated that the
decline in the northern Appalachians started in
the late 1950's to early 1960's.  There is no



evidence to suggest
southern Appal achi ans

decline. Thus
prior to 1960.

limt the intervention

the results of the lower two strata Still remain fitted intervention nodel. As

well outside the P<0.10 level of significance, indicate, the above-6,000-foot model

which is still wunacceptable. For an a posteriori much nore pronounced step change than the other
probability level of P-O10 to be achieved, an a model s.

priori probability of p=0.01 and an intervention Al strata showed signs of decreasing growh
time wndow of 10 years are needed. Unless after 1966. However , growth reduction

addi tional constraints based on a priori | over strata dimnished with

SCORE

SCORE.

no

that any decline in the information can be found to reduce the tine

began before the northern wi ndow of the hypothesized intervention,
intervention should be found hypothesis of no intervention for the | ower
this information is used to strata cannot be rejected on statistical
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time window to 1960-81, Figure 3 shows each series of
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fitting a step intervention model to egech Series. The date of
the intervention is 1966.

scores wth

revealed a



el evation. The cause of the growth reduction is
still undeternined. Climate or other changes in
natural influences are as probable a cause as are
ant hropogeni ¢ pol lutants.

The reality of the elevational gradient in step
size may be questioned. However, the existence
of known environnental-climatic gradients in the
nountai ns suggests that the step-sise gradient is
a reality. The step-size gradient may be due to
a tenperature-related phenomenon. This
hypothesis is consistent With what is now known
about the relationship between tenperature stress
and red spruce declines in the northern

Appal achian Muntains (Cook and others 1987).

DENDROCLIMATOLOGY OF RED SPRUCE
BY ELEVATIONAL STRATUM

As noted earlier, the three strata used in this
study follow both vegetational and climatic
gradients, which are directly correlated with
el evati on. To illustrate the reflection of this
gradient in the tree rings, figure 4 shows the
three series of original tree ring index scores
superinposed on each other. Various time periods
in figure 4 (1932-34, 1935-57, 1959-63) indicate
striking gradients across scores correlated wth
el evati on. The presence of these gradients
across scores suggests that an elevational
gradient in the climatic response of red spruce
operates at tinmes.

At other times in the scores (1940-42, 1958,
1969), the gradient breaks down, and the scores
of all strata are siniliar. This sinilarity
suggests that the relationship between climatic
response and elevation s nonstationary through

tine. The degree to which the gradient exists
probably depends on which eclimatic variables are
limting to red spruce growth in a given year and
how those climatic variables are influenced by
el evation. For exanple, based on the physics of
precipitation formation and its interaction wth
orography, the influence of droyght on red spruce
growth should dinminish with increasing elevation.
However, once the available noisture supply is no
longer limting to growh, this drought response
gradient would probably disappear from the tree
rings.

In this study, dendroclimatic nodeling s
limted by the lengths of the series being
model ed and the wunavailability of long climatic
time series. Ideally, the nmodeling should
proceed as described by Cook 1987, the
dendroclimatic signal shoul d be nodeled for a
long preintervention time period of perhaps 50 to
60 years. A nodel should then be wused to
forecast or predict tree rings through a period
to the present that includes both another
preintervention time block and the post-
intervention period. The time stability of the
dendroclimatic nodel nmust be tested; therefore
another preintervention time period is needed.
If the nodel is verified as time stable, then it
can be used to test for an intervention that
changes the tree ring response to the nodel.
This method has been successively used in
anal yzi ng the red spruce decline in the
Appal achi an Mountai ns (McLaughlin and others
1987, Cook and others 1987).

Because of the insufficient tree ring time
base, a weaker method of nodeling was inplenented
that provided a basis for inference regarding the
climatic response gradient hypothesized earlier.

1ST AMPLITUDES OF LOW (SOLID), MEDIUM (DASH), AND HIGH (DOT) ELEV. prs
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tree ring indices superinposed on
this plot is to highlight certain

time periods when elevation-related gradients in climate response

are likely to be occurring.
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This nethod was based on sinple correlations
between the tree ring scores and monthly climatic
data for the period 1931-83.

Prior to the correlation analyses, the tree
ring scores for each el evational stratumwere
prewhitened to remove autocorrelation. In each
case, significant AR(1) or AR(2) persistence was
removed. The monthly tenperature and
precipitation data, averaged over the northern
and southern mountain c¢limatic divisions of North
Carolina and the southwestern nountain division
of  Virginia, were simlarly modeled  for
aut ocorrel ati on. In this case, the climatic data
showed wvery weak or nonexistent autocorrelation
out to lag 3. Therefore, the climatic data were
not prewhitened.

The dendroclimatic nodeling was then treated as
a multiple input-single output transfer function
(Box and Jenkins 1970) in which ring width was a

function of climate. Gven the 1lack of
autocorrel ation ip either the input or output
series, the principal aim of the transfer

function nodél was to identify those climatic
variables that correlated significantly with tree
rings and identify any delay or |ag-response
between the inputs and the output. The analysis
assumed that the climatic variables were
orthognal, an assunption that was violated for
almost all variables. This violation my have
increased the nunber of significant climatic
variables in the nodel. However, since the aim
of these analyses is strictly correlative and not
predictive, this should not have any serious
impact on the results.

The tree ring scores were lagged up to 3 years
in the transfer function analyses, neaning that
each nonthly climatic variable was correlated
wWith each series of scores for years t, t+, t+2,
and t+3. A plot of the correlations by |ag
produced a nornalized form of the inpulse
response function for 1932-62 and 1966-80 tine
peri ods of the system being nodel ed (Box and
Jenkins 1970). For each period, 48 precipitation
and 48 tenperature correlation coefficients were
computed. \ile the a posteriori nature of these
anal yses makes the use of a priori significance
tests very questionable, these results should be
viewed as nore exploratory than confirnmatory.
Therefore the a priori confidence linmts wll be
used t O assess the significance of the
correlation coefficients.

The results of this nodeling were sonmewhat
complex to explain. In each time period, some
indications of climatic gradients were found.
For  exanple, in the 1932-62 period, the
correlation between tree rings and March
precipitation at lag t+2 were:

Above 6,000 feet: -0.102
5400 to 6,000 feet: -0.604
Bel ow 5,400 feet: -0.636

The correlations of the lower two gtratg Were
significant (p<0.001) in a statistical sense.
However, the t+2 lags were very difficult to
explain  physiologically. Mre  disconcerting,
these correlations conpletely lost statistical
significance (maximum |r|<0.15) in the 1966- 80
period. Therefore these significant correlations
were either spurious or the climatic signal in

the red spruce was highly nonstationary. The
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latter problem may also indicate a loss of
climatic signal conparable to what has apparently
happened to the declining red spruce in the
northern Appalachian  Muntains (Cook 1987,
McLaughlin and others 1987, Cook and others,
1987).

In the suite of 96 total correlations, only
three monthly tenperature variables showed any
consistency through both time periods; July,
August, and Septenber tenperatures correlated
with t+ lagged tree rings as follows:

Stratum 1932-62 1966- 80
Above 6,000 feet July -0. 343" -0.273
August -0.268 -0.134
Sept. -0.223 -0.132
5,400-6,000 feet July -0.388"" -0.395"
August -0. 334" -0. 361
Sept . -0.403%* -0.326
Bel ow 5,400 feet July -0. 351" -0.547""
August  -0.247 -0.576%*
Sept, -0.365"" -0.453"

*5<0.10%*, p<0.05, ***p<o0.01

There is an indication, especially in the 1966-80
period, of an elevational gradient in the
response to the tenperature variables. The high-
el evation stands seemto be less sensitive to
sumrer tenperatures than the |ower stands. There
is also an indication that the below5,400-foot
spruce have been nore sensitive to sumertime
tenperature since 1966.

On the basis of these nmonthly tenperature
correlations, the July, August, and Septenber
tenperatures were averaged into a sumer season
tenperature series (fig. 5). O particul ar
interest is the summer of 1980, the warnest
sunmer in the southern Appalachians since 1931
According to figure 4, the poorest growh year
for red spruce at all elevations was 1981. Gven
the t+l lag response of red spruce to sumer
tenperatures indicated above, the poor 1981
growth year was probably related to excessively
warm summer tenperatures in 1980, which extended
to the highest elevations in the nountains.

Linear regression analyses of the sumer
tenperature series wversus prewhitened red spruce
scores indicated that the below-5,400- and 5,400
to 6,000-foot strata Were equally sensitive to
previ ous sunmer tenperatures over the period
1932-83. The regression R2's were, respectively,
0.199 and 0.182. In contrast, the above-6,000-
foot regression R4 was 0.137. The prewhitened
scores and their tenperature estimates are shown
in figure 6. Interestingly, all strata follow
the pattern of summer tenperature  al nost
perfectly since 1978. This corresponds to the
warnmer than average tenperatures since 1977.

It was previously suggested that the |ower
elevation plots should be nore stressed by
precipitation deficiency than the higher
elevation plots. In order to determne the
degree of drought sensitivity in the prewhitened
red spruce scores, the nonthly Palnmer Drought
Severity Indices (PDSI) (Palmer 1965) were
computed from the divisional average tenperature
and precipitation data. Sinple correlations were
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Figure 5. --July, August, and Septenber

Appal achian Muntains since 1931
variance at frequencies of 1/10 year or less.

1950

again computed between nonthly PDSI and tree ring
scores at lags t through t+ 3 for the' tine
periods 1932-62 and 1966-80. The results of

these sinple correlation analyses

WEre very

simlar to the analyses reported earlier; the
correlations were generally not tinme stable.

However, as before, summertinme drought

and t + 1

l'agged scores showed some time stability and

statistical significance.

These correlations were as follows:

Straftum Month 1932-62 1966-80
Above 6,000 feet July 0. 066 0.521**
August -0.004 0.640%*
Sept . -0.281 0.728***
5,400-6,000 feet July 0.442%* 0.521""
August 0. 427"" 0. 666" "
Sept. 0.079 0.761"""
Below 5,400 feet July 0.457""" 0.458"
August 0.402"" 0.641%*
Sept. 0.244 0.771%**

*p<0.10, **p<0.05, ***p<0.01

In the 1932-62 period, there was a clear

indication of an elevational gradient.

The

hi ghest stratum showed no summertine drought

signal in contrast to the lower strata.

However,

all strata showed a very pronounced summertine

drought response in the 1966-80 period.

This

apparent increase im Sensitivity to PDSI was

stronger than that indicated by
tenmperature al one.

sumertine

As before, the nmonthly PpSi’'s were averaged
into a sumrertinme season estimate of drought

since 1931 (fig. 7). O particular

interest is

I | 1 H
1960 1065 1970 1975 1980

YEAR

average tenperatures for the southern
The dashed Iine highlights

the time period of 1952-55, which contained the
worst drought in the southern Appal achians since
1931. The very strong elevation-related gradient
in the tree ring scores for this period was
al nost definitely caused by severity of this
drought and the way in which it dininished wth
increasing elevation. It is difficult to explain
why red spruce at all elevations  showed
approxi mately the same |evel of response to PDS|
since 1966. Gven the shortness of this tine
period, it is possible that these results are
questionable, even With the high significance
levels of the correlation coefficients. However,
this apparent increase in sensitivity to
sumrertime moisture availability should be
investigated nore fully, as better statistical
methods and tree ring data become available.
Linear regression analyses of the prewhitened
scores versus summer PDSI for the period 1932-83
indicated a weaker relationship overall than for
sumrer  tenperature al one. The R%'s for the
bel ow-5, 400-, 5,400- to 6,000-, and above-6,000-
foot strata were 0.151, 0.114, and 0.035,
respectively. The actual and predicted scores

from these nodels are shown {n figure 8. There
generally appears to be less time stability in
PDSI - spruce rel ationships.

Summer tenperatures and PDSI were correlated
(r--0.38) because the tenperature data were
partially used to estimate the PDSI’s. However,
the level of correlation was not high enough to
indicate that the PDSI correlations were
conpletely confounded by the tenperature effects.
In fact, when the PDSI and tenperature variables
were used in a stepwise multiple regression
analysis to predict red spruce scores, each
vari abl e entered the model according to the
strength and sign of its original correlation
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Figure 6.--Actual (solid) and predicted (dash) prewhitened tree ring scores.
The summer tenperature series (fig. 5) was used as the predictor
of tree rings. The RZ of each nodel is indicated by the RSQ
val ue.
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Figure 7.--July, August, and Septenber average Palmer Drought Severity
Indices (PDSI) series for the southern Appalachian Muntains.
The dashed line highlights variance at frequencies less than 1/10

year.
with the scores. The resulting R2's for the others 1987, Cook and others 1987). However,
bel ow5,400-, 5,400- to 6,000-, and above-6,000- based on the tenperature nodeling denonstrated in
foot strata were 0.252, 0.203, and 0.123, this study (fig. 6), the dendroclimtic signal
respectively. The actual and predicted scores appeared to continue through the post-1965
from these models are shown in figure 9. decline period. Thus the reported decline does
not seemto represent a mgjor loss of tree
SYNTHESIS OF RESULTS vitality as was indicated for the northern red
. . spruce. At this stage of inquiry, the
The results of this study indicated that red Appal achian Mountain northern and southern red
spruce in the southern Appalachian Muntains have spruce situations appear to be different.
exhibited, to varying degrees, some irregular The dendroclimatic anal yses revealed that
behavior in their ring widths sgince the mid- previous  summer  tenperatures correl ated
1960's. At elevations above 6,000 feet, significantly with red spruce ring width the
statistical evidence suggest a steplike decline following year. The lag-1 negative tenperature
in radial increment since about 1966. Thi s correlations were renmarkably consistent with nore
decline has not been correlated with any specific rigorously developed dendroclimatic nodels for
climatic deviation in this study. However, the nunerous stands of red spruce in the northern
way in which the magnitude of the decline Appal achi ans (McGlaughlin and others, [in press],
increased with elevation suggested that the cause Cook and others [in press]). It is increasingly
of the decline was sonmewhat related to elevation. clear that the role of previous  summer
A more thorough search for natural and temperature as a determinant of red spruce growh
ant hropogenic causes of this putative decline is and vigor is genetically based. Mor e
war r ant ed. In addition, new and inproved inportantly, warm sununer tenperatures appear to
collections of ring wdth data are highly be strongly correlated with past and present
desirable to refine the statistical analyses and decli nes of red spruce in the northern
val fdate or refute the intervention results Appal achians (Cook and others 1987).  Should the
presented here. apparent increase in sensitivity to prior-sumrer
The decline of the southern red spruce at high tenperatures be correct for the bel ow 5, 400-foot
elevations could lead to broad scale nortality, spruce, lowelevation spruce in the southern
as found din northern  Appal achian stands. Appal achians are likely to decline if warnmer than
However, the dendroclimtic nodeling has reveal ed average sunmer tenperatures persist. A war mer
an apparent singular difference between the world caused by CO2 and other greenhouse gases
northern red spruce and southern red spruce would not positively affect the future of red
conditions in the Appalachian Muntains since the spruce in North America.
1960's. In the northern red spruce, the The apparent increase in red spruce
dendroclimtic signal conpletely  disappeared sensitivity at all elevations to drought since
after the trees entered the post-1960 period of 1966 and with sensitivity to summer tenperatures
declining ring widths (Cook 1987, McLaughlin and since 1977, suggests that the southern red spruce
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Figure 8.--Actual (solid) and predicted (dash) prewhitened tree ring scores.
The summer PDS| series (fig. 7) was used as the predictor of tree
rings. The RZ of each model is indicated by the RSQ val ue.
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sare in a prolonged period of climatic stress. A
simlar pattern of increased c¢limatic stress from
about 1938-60 preceeded the current broad scale
decline of red spruce in the northern
Appal achians (Cook and others 1987). Presently
it is inpossible to say that this circunstantial
agreenent in synptonology is part of the
epideniol ogy of red spruce decline. However, it
ig cause for concern and warrants further study.
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Uilizing Time Series Mdels and Spatial Analysis
of Forecast Residuals for Tree Ring Anal ysis of Red Spruce

J. Keith Od and Janice A Derr

SUMMARY

The information from a field study on permanent
plots established by the Tennessee Valley
Authority in the Geat Snoky Muntains was used
to detect and evaluate recent changes in annual
ring width of red spruce (Picea rubens Sarg.).
Time series nmodels were fit to mean annual ring
widths of a maximum of 5 mature red spruce trees
for each of 44 plots for the vyears 1900-84. The
mean level of residuals from forecasts for the
last 20 years of the series were generally
negative, indicating a reduced ring wdth
relative to predicted ring width. These forecast
residuals showed substantial spatial dependence
that could not be explained by geographical
factors alone. \hen both geographical and biotic
factors, primarily measures Oof stand quality,
were taken into account, the residual variation
in ring widths showed a weaker pattern of |ocal
spatial dependence.

I NTRODUCTI ON

The National Park Service (NPS) and the
Tennessee Valley Authority (TVA)  conducted
studies on experinmental plots in the Geat Snoky
Mountains, producing a substantial data base of
information that can be used to exanmine annual
ring widths of red spruce (Picea rubens Sarg.).
In this report we discuss one approach to
analyzing ring widths. The objective of our
study was to detect recent changes during a
designated time series (1900-84) that may be
attributable to environmental changes, such as
the occurrence of acid deposition. Variations in
ring widths relative to historical patterns are
assessed. Also described ig how to determ ne
whether such patterns exist because of plot
characteristics or additional spatial effects.

The main steps of the study may be summarized
as follows:

1. Construct an average ring width tine series
for each of the study plots established by
the TVA.  Plots established by the NPS were
not included.

2. Devel op measures of recent increases or
decreases in ring width for each plot
relative to forecast values.

3. Relate the increases or decreases in ring
width to geographical and bhiotic factors.

4, Determine whether there is any spatial
pattern to the values of excess or
deficiency and whet her geographi cal and
biotic factors are responsible for the
pattern.

J. Keith Od is a professor in the Departnents of
Janice A Derr is managing director
Pennsylvania  State University,

Statistics.
Consul ting Center,
Pennsyl vani a.

METHODOLOGY AND RESULTS

Step |.--Construct an average ring wdth time
series for each of the study plots established by
the TVA

The followi ng are decisions made during the
exploratory stage of the analysis:

Choice of Plots.--The analysis reported in this
proj ect concerns 48  experimental plots
established by the TVA in the Geat Snoky
Muntains in North Carolina. The decision not to
include the experinental plots established by the
NPS in the same general region was nmotivated by
tine and resource constraints.

Choice of Measurenent Scale.--Graphs of the
time series for each of two cores taken from five
trees usually produced very similar patterns.
Since the overall plot was the focus for this
study, the two core series were averaged for each
tree. The selection of a designated tine period
as a series for the entire plot was nore
difficult, since individual trees may show
consi derable variations from year to year. The
overall mean was chosen aS the measure Of average
ring width for the plot. Further consideration
of this issue is presented in the Di scussion
section.

Sel ection of Trees and Tine Frame for
Analysis. --Graphs for the time series of ring
widths for each of the 5 trees per plot were then
constructed for all 48 plots. Exanples of four
of these graphs are shown in figures 1 through 4.
From an exanmination of the 48 graphs, the
foll owing decisions were made:

1. Only red spruce would be wused in the data
analysis to remove some heterogeneity from
the time series of ring w dths averaged
across trees in a plot. Sanple size was
not seriously reduced because 214 of 234
trees in the study were red spruce, and
only 4 plots had no red spruce.

2. Only red spruce trees with a pith date
earlier than 1940 would be included in the
study.  Therefore 25 red spruce trees were
elimnated, and some heterogeneity caused
by an apparent initial rapid increase in
ring width in the early years of growth was
al | evi at ed.

3. Ring widths from 1900 onward were analyzed.
The heterogeneity caused by the staggered
entrance of trees into the plot averages
and by the apparent initial rapid increase
in ring width was ninimnzed.

Management Sci ence and

of the Statistical
University  Park,
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Figure 1.--Graph of ring widths of red spruce (Picea rubens Sarg.)
6 of 48 selected experinental
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Figure 2.--Gaph of ring widths of red spruce (Picea rubens Sarg.) on plot
18 of 48 selected experinmental plots established by the
Tennessee Valley Authority in the Great Snoky Mountains.
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Figure 3. --Graph of ring widths of red spruce (Picea rubens Sarg.) on plot
23 of 48 selected experinental plots established by the
Tennessee Valley Authority in the Geat Smoky Muntains.
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Figure 4.--Graph of ring width of red spruce (Picea—rubens Sarg.) on plot
31 of 48 selected experinmental plots established by the
Tennessee Valley Authority in the Geat Snoky Mountains.
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Choice of Explanatory
characteristics that were wused in the study
included both geographical and biotic factors as
neasured by survey teams. Average annua
tenperature and total annual precipitation for
the three climatic regions in the study (North
Carolina northern  nountains, North “Carolina
sout hern nount ai ns, and Virginia  southern
mountai ns) appeared to be fairly simlar in the
occurrence of peaks and dips. Therefore, because
detailed nodels of precipitation are being
devel oped by others in the project, climate
variables were not included at this stage

Upon conpletion of the exploratory data
analysis, 1 tine series of ring widths was
constructed for each of the 44 remaining plots

Variabl es.--The  plot

(48 mnus the 4 with no red spruce) from the TVA
study. The time series began with the year 1900
and ended with 1984 The series included only
those red spruce trees with pith dates earlier
than 1940. Each tinme series entry was an average
of the width of two cores from each tree, taken
from a maxinum of five red spruce trees. Table 1
summarizes characteristics of the data for each
plot and refers to geographical factors, and
table 2 refers to biotic factors.

Step 2. --Devel op measures Of recent increases
or decreases in ring width for each plot relative
to forecast values

Time Series Analysis. --To determine the recent
pattern of tree ring growh on each plot, an

Table 1.--Plot characteristics and geographical variables

(bservation Pl ot ELEV ASPECT LAT LONG
1 1 5200 21 36. 6653 al . 5375
2 2 5640 330 36. 6597 al . 5472
3 3 5200 210 36. 6542 81.5333
4 4 6020 35 36. 1055 82.1333
5" 5 6140 213 36. 1000 82.1222
6 6 5700 90 35. 3278 82.9612
7 7 5740 16 35. 3500 82.9612
8 8 4480 205 36. 3417 81. 6500
9 9 6000 220 35. 7375 82. 3195
10 10 6060 225 35. 7250 82.2917
[l Il 5520 220 35.7292 82.2792
12 12 6200 245 35. 7445 82. 3250
13 13 6000 255 35. 8305 82. 2555
14 14 6360 137 35. 7750 82. 2583
15 15 5880 303 35. 8167 82. 2555
16 16 6280 300 35.7833 82. 2583
17 17 4480 340 36. 3500 81. 6417
18 18 5470 190 36. 6375 81. 6055
19 19 5490 345 36. 6403 81. 6055
20 20 5300 55 36. 6638 81.5403
21 21 5340 55 35.7208 82.2792
22" 22 5420 142 35. 7458 82.2722
23 23 5140 125 35. 7417 82. 2750
24 24 5100 190 35. 7458 82. 2667
25 25 5280 305 35.7333 82. 3250
26 26 5340 123 35. 7250 82.3125
217 217 5300 301 35.7222 82.3083
28 28 4140 23 35. 7250 82.2722
29 29 5700 30 36.1042 81.8125
30" 30 6015 345 36. 0917 82. 1500
31 31 4540 235 36. 3388 81. 6542
32 32 5840 0 35. 4638 83. 1375
33 33 5040 90 36. 1112 81. 7958
34 34 5110 290 36. 1083 81.8250
35" 35 6000 305 35. 8250 82. 2555
36 36 5780 120 35. 8458 82. 2417
37 37 4880 193 35. 8388 82.2388
38 46 4400 50 36. 3458 81. 6500
39 54 5120 35 35. 4750 83. 1167
40 55 5800 268 35. 4750 83. 0958
41 109 5650 220 35.7888 82.2667
42 113 6240 265 35.7292 82.2917
43 125 5000 350 36. 1083 82. 1333
44 132 4480 215 36. 1292 82.2917
45 153 5060 305 35.2945 82. 9375
46 158 4620 20 35. 3625 82.8833
47 159 5240 60 35. 3388 82.9612
48 207 4880 340 35.3583 82.8542

*plots elininated from study because No red spruce was present
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Tabl e 2.--Plot characteristics and biotic variables

Cbservation SBALIVE  SBADEAD SBAX LIVETREE = DEADTREE TREEX
1 56.7 4.3 0. 92951 6672 185 0.97302
2 38.6 5.9 0.86742 10329 247 0.97665
3 39.6 7.3 0.84435 7771 1186 0.86759
4 1.6 11.1 0.51101 642 1482 0.30226
5% 41.5 6.0 0.87368 3064 544 0.84922
6 30.2 3.3 0.90149 4695 704 0.86961
7 31.2 3.7 0.89398 1507 408  0.78695
8 43.1 0.5 0. 98853 1742 148 0.92169
9 48.2 3.5 0.93230 9798 111 0.98880

10 37.5 6.3 0.85616 4547 111 0.97617
11 30.1 2.8 0.91489 1532 988  0.60794
12 41.7 26. 6 0. 61054 10687 185  0.98298
13 14.7 2.6 0.84971 1705 309  0.84657
14 26.6 7.2 0. 78698 1915 741 0.72101
15 25.1 12.5 0. 66755 4176 1161  0.78246
16 12.0 12.6 0.48780 7141 543 0.92933
17 39.0 2.4 0.94203 2508 222 0.91868
18 55.7 3.3 0. 94407 1174 383 0.75401
19 34.2 1.5 0.95798 1507 74 0.95319
20 45.1 4.9 0. 90200 2002 99  0.95288
21 45.9 1.3 0. 97246 1149 173 0.86914
22" 52.8 2.6 0. 95307 8698 124 0.98594
23 37.7 0.0 1. 00000 531 0  1.00000
24 60.7 1.1 0. 98220 3286 222 0.93672
25 43.5 19.6 0. 68938 3632 136 0.96391
26 69.0 0.0 1. 00000 7401 0 1.00000
217 52.5 8.8 0. 85644 3410 432 0. 88756
28 63. 2 10.1 0.86221 840 210 0.80000
29 18.5 15.1 0. 55060 4707 334 0.93374
30" 45.0 10.0 0.81818 9044 2557  0.77959
31 35.4 2.7 0.92913 1680 297 0.84977
32 10.5 32.4 0. 25060 1075 1631  0.39727
33 18.9 2.9 0. 86697 1025 86  0.92259
34 36.3 4.9 0. 88107 1248 556  0.69180
35" 15.5 0.2 0. 98726 1520 25  0.98382
36 38.7 13.7 0. 73855 4213 272 0.93935
37 59.6 0.9 0. 98512 914 12 0.98704
38 34.1 0.5 0.98555 1124 148 0.88365
39 5.9 0.8 0. 88060 37 80 0.31624
40 39.5 2.4 0. 94272 1606 219 0.88000
41 28.2 4.9 0. 85196 2718 292 0.90299
42 15.3 0.0 1.00000 3497 0  1.00000
43 38.4 4.1 0. 90353 8686 1819  0.82684
44 46.0 0.4 0.99138 1594 70 0.95793
45 46.7 0.9 0. 98109 1557 173 0.90000
46 21.6 1.9 0.91915 1890 400  0.82533
47 10.5 7.8 0.57377 1408 2088 0.49275
48 28.2 19.1 0.59619 803 738 0.52109

*plots elimnated from study because

aut oregressive-integrated-noving average (ARIMA)
time series nodel for each of the plots was first
devel oped. Kendall and others (1983) and
Vandael e (1983) provide details of ARIMA models
and the underlying assunptions .

Time Series Modeling.--Various years of the
series indicated marked trends of tree ring
growth. To acconmpdate trends, the series were
differenced where necessary. Cther approaches to
this problem are covered in the Discussion
secti on. In this data set, it was never
necessary to difference more than once. A
summary Of the fitted nodels is presented in
table 3. From the table, it can be seen that

no red spruce was present.

many of
an

by

(MY terns.

The MA terns

i mproved

the series were described satisfactorily
aut oregressive

occasionally with higher order noving average

schene of

the fit

as nmeasured by

the diagnostics but did not materially affect the
forecasts. The autoregression [AR(2)]
coefficients were usually both positive with $1 +
¢o in the range 0.6 to 0.9, indicating a carry-
over from one grow ng segson to the next, as
woul d be expected. When ¢1 + ¢9 exceeded 0.9,
nonstationarity in the series was evident, and
differencing was performed. A | oworder MA
scheme usually gave an adequate description of
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Tabl e 3.--Summary of autoregressive-integrated-noving average nodels for

each pl ot
Pl ot No. Difference Lag Structuret Comment s
AR MA
1 No 2 0
2 No 2 0
3 No 2 0
4 No 2 0
6 No 2 0
7 No 2 (7?)
8 Yes 0 (1,4,10) Short series
9 No 2 0
10 No 2 0
11 No 3 0 Short series
12 No 2 0 Short series
13 Yes 0 1 Short series
14 Yes 2 0 Short series
15 Yes 3) 0 Short series
16 Yes 0 (4) Short series
17 Yes 0 2
18 No 2 (8)
19 No 2 0
20 Yes 0 2
21 Yes 1 0
23 Yes 0 1
24 Yes 0 3
25 No 2 0
26 No 2 0
27 No 2 0
28 No 2 0
29 Yes 0 (2,9)
31 Yes 0 (1,2,6)
32 No 2 (6)
33 Yes 0 (1,2,6)
34 No 2 0
36 No 2 0
37 No 2 (10?) Structural
change in
46 No 1 0 series?
54 No 2 0
55 No 2 0
109 Yes 0 2 First seven
terns deleted
113 Yes 0 0
125 Yes 0 2 Short series
132 Yes 0 1
153 Yes 0 (1,4,5,6)
158 Yes 0 (2,5)
159 Yes 0 (1,4) Short series
207 No 2 (3,7?)
+ k indicates lags 1, 2, . .k

(k) indicates lag k only

(j,k) indicates lags j,k only

(k?) indicates lag k a possibility
AR = autoregression coefficient
MA = noving average




the differenced series.
schemes with a root of
near
| ow order
Therefore
practice
properties.

The only series that ecaused major problens was
that for plot 109, where mgjor increases in the
first 7 years were followed by steady declines.
Aiter the data for the first 7 years were
deleted, a satisfactory nodel was fitted. It can
be assumed that the use of ring width rather than
i ncrenental basal area was the cause of these
nonstationarity problems.

Measures 0f Recent Relative cChange in Ring

the auxiliary equation

MA scheme with a single difference.
the nodels are not wvery different in
despite their distinct theoreti cal

It is well known that AR

unity can often be well approximated by a

have involved fitting to 1964 (or 1974) and then

forecasting. However, the risk of structural
changes in the series was such that the pure
forecasts nmight nisrepresent recent  trends.
Al'though  our approach biases the residuals
sonewhat towards zero, the nmethod seened to
provide a clearer picture of recent devel opments.

Because changes in ring wdth mght be
considered in either absolute or percentage
terms, also considered were the indicators:

— average of residuals
average ring widih

proportional change

over the two forecast periods. These values are

also listed in table 4 as PCT20 and PCT10.

Wdth.--To assess repent relative increases Of Assessment of Mean Change. --One should note
decreases in ring width, each series over the whether the residual ring widths are below the
periods was forecasted: expected wvalue of zero for the periods
1. 1965-1984, using 1964 as the forecast considered, The results of one-tailed t-tests gopn
orrgin. the data in table 4 were as fol |l ows;
2. 1975-1984, using 1974 as the forecast
origin.
The residuals, the difference %»etween observed _
and predicted values, were then computed for ] Adj ust ed
each year in the period. The means and standard Variabl e Mean t-val ue t-val ue
deviations of these residuals were computed for
each plot (table 4). It should be noted that the RES20 -17.47 3.28 -1.89
models were fitted to the entire series, 1900-84, PCT20 -0.108 3.46 -2.34
and forecasts were then generated from the RES10 4.43 0.93 0.50
forecast origin. A pure forecasting nethod woul d ECT10 0.022 0.79 0.47
Table &.--Summary statistics from time series analysis
Summary Statistics®
(hservation OVMEAN RES20 R20SD PCT20 RES1I0  R10SD  PCT10
1 189.5 18.3 34.4 0. 9657 -14.3 43.3 -0.07546
2 158.5 -34.5 25.3 -0.21767 -4.8 21.5 -0.03028
3 187.3 -48.1 24.8 -0. 25681 -1.0 9.9 -0.00534
4 147.1 -50.5 20.6 -0. 34330 -15.6 22.1 -0.10605
5
6 198. 6 -3.7 30.4 -0.01863 5.2 33.7 0.02613
7 147.9 -37.1 23.1 -0. 25085 -35.1 26.9 -0.23732
8 375.3 44.8 63.5 0.11937 93.7 63.9 0. 24967
9 140.0 -42.1 30.8 -0.30071 -22.1 16.0 -0.15786
10 138.7 -31. 23.9 -0.22711 -28.8 29.9 -0.20764
11 321.9 -57.7 52.1 -0.17925 -30.2 43.0 -0.09382
12 163. 6 -16.3 22.4 -0.09963 -5.4 26.9 -0.03301
13 152.0 17.4 34.7 0. 11447 62.6 35.6 0.41184
14 259.1 25.8 31.4 0.09958 41.1 31.3 0.15863
15 132.4 -18.5 18. 6 0.13973 26.6 21.8 0.20091
16 134.9 84.4 75.5 0. 62565 85.6 48.1 0. 63454
17 189.9 3.4 30.6 0.01790 15.4 13.7 0. 08110
18 182.3 -39.0 22.5 0.21393 -17.6 29.1 -0.09654
19 81.6 -32.7 8.3 0.40074 6.6 7.6 0.08088
20 232.5 -58.1 37.1 -0.24989 -9.2 37.3 -0.03957
21 239.0 -113.1 48.9 -0.47322 -39.7 43.5 -0.16611
22"
23 182. 4 -25.1 36.9 0.13761 24.3 48.5 0.13322
24 192.5 -45.8 30.4 -0. 23792 36.6 32.0 0.19013
25 126.5 -26.4 21.0 -0.20870 -16.1 24.8 -0.12727
26 172.6 -20.7 31.2 -0.11993 -23.5 40.5 -0.13615
27 131.2 -31.2 28.2 0.23780 -24.0 32.3 -0.18293
28 125.5 -19.3 16. 2 0.15378 -10.3 19.5 -0.08270
29 82.7 8.4 22.2 0.10157 27.7 23.2 0. 33495
30"
31 203.9 -55.5 20. 4 0.27219 -5.8 22.1 -0.02845
32 165. 2 -15.9 24.2 0. 09625 31.6 26.0 0.19128
33 184.3 -3.4 37.7 0.01845 26.6 48.5 0. 14433
34 173.8 21.3 30.8 0. 12255 26.8 38.9 0.15420
35"
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Tabl e 4.--Summary statistics fromtime series analysis--Continued

Summarv_Statistiest

(bservation OVMEAN RES20 R20SD PCT20 RES10 R10SD  PCT10
36 103.1 -19.4 16.5  -0.18817 -10. 1 23.5 -0.0979
37 112.1 -12.4 15. 8 -0. 11062 -5.8 21,7 -0.05174
38 189.5 -14.5 41.8 -0.07652 -24.5 51.2 -0.12929
39 136.5 -27.4 20.9 -0.20073 -21.9 25.1 -0.16044
40 236. 2 -12.5 31.0  -0.05292 -20.8 33.1 -0.08806
41 288.5 41.0 31.6 0.14211 33.4 21.3 0.11577
42 187.7 -22.1 32.3 -0. 11774 -3.5 35.6 -0.01865
43 185.9 24.6 36.8 0. 13233 50.7 39.6  0.27273
44 189.2 -4.9 33.4  -0.02590 23.6 39.9 0.12474
45 139.3 -88.8 34.8 -0. 63747 -35.7 30.4 -0.25628
46 176.9 1.3 23.5 0. 00735 -7.8  32.2 -0.04409
47 273.3 -45.2 37.5 -0. 16539 -7.2  37.6 -0.02634
48 127.9 14.2 13.7 0.11102 17.5 14.8 0.13683

+ OVMEAN = overall nean of series
RES20 = residuals from forecasts for last 20 years
R20sD = standard deviation of RES20 val ues.

PCT20 = RES20/0VMEAN.
RES10, R10SD, PcT10 are defined simlarly.

The adjusted t-values were computed followi ng the
approach described by diff and Od (1981)

nmodified to the one-sanple case. The adjustnent
takes account of the positive spatial dependence
anong the data and may be witten as:
tadj =t (1.1),

where 1 is defined in equation (1) under Step 4.

Evidently the 20-year residual ring wdths
have a nean that is significantly less than zero,
while the null hypothesis of a zero nean is
accepted for the 10-year val ues. Therefore a

drop is indicated
1960's that
| oner level.

in average
has subsequently stabilized at

ring width in the
t hat

Step 3.--Relate recent increases and decreases
in ring width to geographical and biotic factors.

In this step, the changes in ring width were
related to the various plot characteristics to
determine if there were any explanation for the
changes.

Regression Analysis. --Each of the four residual
ring width measures was nodeled using stepwise,
regression with the following variables:

geogr aphi calal: latitude (LAT), longitude

(LONG), (latitude)? = LAT2, (longitude)? =
LONG2, 1latitude * longitude = LATLONG,
elevation (ELEV), and aspect (coded as sine
and cosine, SASP and CASP).

biotic: nunber of 1live trees (LIVETREE),
nunber of dead trees (DEADTREE), stand basal
area of live trees (SBALIVE), stand basal
area of dead trees (SBADEAD), and two derived
indices:
IVETREE
TREEX _ (LIVETEEE + DEADTREE)
BALIVE

SBAX — TSEALIVE + SBADEAD)
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Plots elininated from study because no red spruce was present.

where TREEX is proportion of live trees, and SBAX
is the proportion of live basal area. The val ues
of these variables are listed in table 1.

The quadratic factors of latitude and |ongitude
were included to allow a loworder trend surface
analysis (diff and others 1975). However ,
initial runs using only the geographical
variables showed virtually no correlation between
any of these variables and the residual ring
width neasures; therefore they have not been
reported separately. A total of eight analyses
are reported in tables 5 through 8. For each of
the residual ring wdth neasures, the analysis
was performed using both unweighted and weighted
| east squares (LS). The weights wuged were the
standard deviations given in table 4. In all
cases, the significance level for a variable to
leave or stay was set at 0. 25. The residuals
from the regression analyses are given in tables
9 and 10.

Interpretation of Regression Results.--
Conparisons within and across tables 5 through 8
show the follow ng:

1. The value of R2 is in all cases somewhat

hi gher for weighted LS than for
unwvei ght ed. A high standard deviation in
the time series residuals shows an erratic
ring width pattern. Therefore  the
weighting is useful because greater
enphasis is given to the plots with nore
stable ring wdth developnent. O herw se

the same variables were selected by the
stepwi se procedures for both estimation
procedures, and the two sets Of estimates
were broadly consistent for each of the
four dependent variables.

2. The proportional change indicators yield
models with a higher degree of explanatory
power than those based on absolute changes.
Since average ring widths vary considerably
between sites, wuse of the proportional
change indicator seems preferable.



Table 5.--Regression analysis for the dependent variable 20-year mean

residual ring w dth (RES20)
Unwei ghted |east squares
Sum of Mean
Scurce df squar es squar e F val ue Pr ob>F
Model 4 10813. 450 2703. 362 2. 466 0. 0608
Error 39 42758. 529 1096. 373
C total 43 53571. 979
Root MSE 33. 111517 R-square 0.2018
Dep nean -17. 465909 Adj R-sq 0.1200
CV. -189.578
Par anet er St andar d T for HO
Variable df estinpte error Parameter=0 _Prob > |T|
Intercept 1 70. 597735 70. 426505 1.002 0.3223
ELEV 1 -0.013709 0.010648 -1.287 0. 2055
SBAX 1 -69.517093 40. 250901 -1.727 0.0921
TREEX 1 91. 734416 36. 388501 2.521 0.0159
SBALI VE 1 -0.916871 0.442469 -2.072 0, 0449
i ghted |east squares
Sum of Mean
Sour ce df squar es squar e F val ue Prob>F
Model 4 800896 200224 4.859 0.0028
Error 39 1607051 41206. 433
C total 43 2407947
Root MSE 202. 994 R-square 0.3326
Dep nean -13. 665677 Adj R-SQ 0. 2642
C.V. -1485. 43
Par amet er St andar d T for HO
Variable df estimate, error Parameter=0 Prob > |T§
Intercept 1 99.287126 81. 765087 1.213 0.2324
ELEV 1 -0.017920 0.011910 -1.505 0. 1405
SBAX 1 - 105. 865 45. 857356 -2.309 0.0264
TREEX 1 135. 208 39. 969084 3.408 0.0015
SBALI VE 1 -1.201380 0. 502896 -2.389 0.0218
The regression analyses for geographical 4. The nmpst inportant variable {n almost 411
variables provided only wvery little cases was the tree index, TREEX, which is
expl anatory  pover. Wien the biotic probably an indicator of stand health, and
variables were also included, elevation strong, positive correlation is to be
became inportant, and the residual ring expected.  The other major biotic variable
W dth became more negative as elevation was SBALIVE, but this appears with a
i ncreased. This suggests that the higher negative sign in the regression. SBADEAD
elevation plots did worse than average over and the stand basal area index (sBa) algo
the 10- and 20-year periods considered. appear on occasion, again with negative
The only other geographical variables that signs in all cases. The interpretation of
appeared in any models were LONG and SIN these effects is unclear, but these
(aspect). The coefficient on LON® variables may relate to other biotic

suggests a downward trend in the 10-year
change variables from east to west. Since
the plot |ocations extended approxi mtely
northeast to southwest, this may reflect
the influence Of c¢limatic factors. The
coefficient for SIN (aspect) indicates that
the proportional change variable for the
10-year period is higher in plots with a
southerly aspect. Again, this my reflect
climatic effects.

Overall,
proportional

factors such as the age of the stand and

the degree of conpetition.
the weighted regressions on the
change indicators appear to give

a reasonabl e expl anation of the variations ip

resi dual

ring wdth.

Step 4.--Determine whether there is any spatial

pattern to the val ues of

excess or deficiency and
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Table 6.--Regression analysis for 10-year nean residual ring width (RESI0)

Unwei ghted |east squares
Sum of Mean

Sour ce df squar es square F val ue Prob>F
Model 2 6777. 608 3388. 804 3.939 0. 0272
Error 41 35269. 460 860. 231
C total 43 42047. 067
Root MSE 29. 329690 R-square 0.1612
Dep nean 4. 427273 Adj R-sq 0.1203
CV. 662. 4776

Par anet er Standard T for HO
Variable df estimate error Parameter=0 Prob > T}
I nter cept 1 814. 995 404.974 2.012 0. 0508
SBALI VE 1 -0. 763081 0. 303229 -2.517 0. 0159
LONG 1 -0. 115851 0. 059378 -1.951 0. 0579

\\i ghted |east squares
Sum of Mean
Sour ce df squar es square F val ue Pr ob>F
Model 2 301627 150813 4.325 0.0198
Error 41 1429655 34869. 627
C total 43 1731281
Root MBE 186. 734 R-square 0.1742
Dep nean 7.603876 Adj R-sq 0. 1339
CV. 2455. 175
Par anet er St andard T for HO
Vari abl e df estimate error  parameter=0 Prob > |T|
I ntercept 1 1097. 709 474,049 2.316 0. 0257
SBALI VE 1 -0. 852323 0. 342500 -2.489 0.0170
LON® 1 -0. 156754 0. 069541 -2.254 0. 0296
whether  this can be accounted for by Under the null hypothesis (H,) of no spatial

geographical and biotic factors.

In this section, the spatial methods used are
first described. Then the spatial analysis for
the residual ring widths and for their residuals
from the regression equations devel oped in step 3
is presented. The objective of the spati al
analysis is to discover if there is any spatial
pattern in the recent changes in ring width, both
anong the initial values and the residuals, from
the regression equations.

Spatial Methods.--The first step in any spatial
analysis is to determine whether or not there is
any evidence of spatial pattern among the data,

given the plot locations. If the n plots have
observed values xi (i =1, . . . . n), we set zy =
Xi - % and use the spatial autocorrelation
statistic:

n Yy, Wi 2y 2
ij
5y 21: z§
where S, = ; %: Wi and t he {w;; are a set of non-

I= (1)

negative weights to be specified, with w,= 0.
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autocorrel ation (or independence), it may be
shown that:

E(1) = -1/(n -1)

adiff and Od (1981) show the distribution of 1
under Hy to be approximately normel, provided

that n is not too small. For the configurations
of weights used and the nunber of plots available
(n = 4&4), the norml approxi mation is
satisfactory. It should be noted that 1 jg not
defined quite like a regular correlation
coefficient; in particular, the values tend to be
closer to the origin than one would expect.  For
this reason, the nagnitudes of the standard
devi at es

(1 - E(D1/4D

are often nore useful than the values of |
t hensel ves. From diff and Od (1981), the
variance of 1 under HO is:

V(I) = E(12) .« [E(I)]2,




wher e

However,

array
the choice of weights for
when the

is

use

Tabl e 7.--Regression analysis for 20-year nean residual ring width
divided by overall nmean ring wdih (PCT20)
Unwei ghted |east squares
Sum of Mean
Sour ce df squares square f value Pr ob>F
Model 5 0. 466992 0.093398 2.592 0.0411
Error 38 1. 369366 0. 036036
C total 43 1. 836359
Root MBE 0. 189831 R-squar e 0. 2543
Dep nean -0. 107706 Adj R-sq 0. 1562
c. V. -176. 249
Par anet er Standard T for HO
Variable df estimate error  parameter=0 Prob > [T|
I ntercept 1 0. 995842 0. 583306 1.707 0.0959
ELEV 1 -.0000856071 00006109282 -1. 401 0. 1692
SBAX 1 -1.074991 0. 566563 -1.897 0.0654
SBADEAD 1 -0.013608 0.011104 -1.225 0.2279
TREEX 1 0.579832 0.215236 2.694 0.0105
SBALI VE 1 -0.00389848  0.002933337 -1.329 0.1918
Vi ghted |east squares
Sum of Mean
Source  df squar es square F val ue Prob>F
Model 5 35. 672534 7.134507 6. 069 0.0003
Error 38 44.671739 1. 175572
C total 43 80. 344273
Root MSE 1. 084238 R-square 0. 4440
Dep nean -0. 073059 Adj R-sq 0. 3708
c. V. -1484. 05
Par anet er Standard T for HO
Variable df estimate error Paraneter- Prob > |T]
I ntercept 1 1.311741 0.583284 2.249 0.0304
ELEV 1 -.0000828751 .00006361611 -1.303 0.2005
SBAX 1 -1.582828 0.531610 -2.977 0. 0050
SBADEAD 1 -0. 022603 0.011481 -1.969 0. 0563
TREEX 1 0. 800385 0.214337 3.734 0. 0006
SBALI VE 1 -0.00426758 0. 003139655 -1.359 0.1821
Choice of Wights. --Gven the
E(1?) = (n[(n? - 3n + 3)S, - n S, + 357 of plot locations, _
) R in (1) 1is sonmewhat arbitrary.
by[(n? - n)S, - 2n §, + 6571}/ variables X are normally distributed,
known (C1iff and Od 1981) that 1 ig the locally
2
(n+1) (n«2) (n -3, 2 most powerful test alternatives of

wher e

. w )%, and

= number of pl'ots,
= ; Z Vi
- g ; Gy« Wiy W)
= ; (w,
.= L wyand vy

d

3

E Wji

where R and o2 are paraneters and Wis symetric.
then becomes Hp:
Since we are interested in
simlarities,
> 0 when plots i
0 when they are distant.

The nul |

Var (X)

det eCting
suggest s

close,

H:

== a' 1
local
that wj

but Wj o~

lypot hesi s
2T
spati al

Var(X) = o2(1 - &1

this
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Table 8.--Regression analysis for
divided by overall nean

10-year mean residual ring width
ring width (pcT10)

Unwei shted |east sauares

Sum of Mean
Sour ce df squar es squar e F val ue Prob>F
Model 7 0. 678485 0. 096926 4. 467 0.0012
Error 36 0.781208 0.021700
C total 43 1. 459693
Root MSE 0. 147310 R-square 0. 4648
Dep mean 0. 021891 Adj R-sq 0. 3607
c. V. 672. 9362
Par anet er Standard T for HO
Variable df estimate error Parameter=0 Prob > |T|
I ntercept 1 3.999241 2.193178 1.823 0.0765
ELEV | --.0000812191 .00004886896 -1.662 0. 1052
SASP | -0. 053525 0. 035049 -1.527 0. 1355
LONG2 1 .0.000375621 0.0003257647 -1.153 0. 2565
SBALI VE 1 -0.00354181  0.002301411 -1.539 0.1326
SBAX 1 -1.411441 0. 455795 -3.097 0.0038
SBADEAD 1 -0.020464  0.009001847 -2.273 0. 0291
TREFX 1 0.520329 0.181001 2.875 0. 0067
Vi ghted |east squares
Sum of Mean
Sour ce df squares square F val ue Prob>F
Model 7 27.779442 3.968492 5. 605 0.0002
Error 36 25. 489160 0.708032
C total 43 53. 268603
Root MSE 0. 841447 R-square 0.5215
Dep nean 0.035922 Adj R-sq 0. 4285
CV. 2342. 437
Par anet er St andard T for HO
Variabl e df estimate error Parameter=0 Prob > |TI
I ntercept 1 4.831085 2. 305746 2. 095 0. 0432
ELEV 1 -0000758574 .00005072042 -1.496 0.1435
SASP 1 -0. 069365 0.033810 -2.052 0. 0475
LONG2 1 -0.000484338 0.0003417928 -1.417 0.1651
SBALI VE 1 -0.00324435 0.002267685 -1.431 0.1611
SBAX 1 -1.564668 0.436777 -3.582 0. 0010
SBADEAD 1 -0. 024429 0.009060183 -2.696 0. 0106
TREEX 1 0. 554004 0.181281 3.056 0. 0042
Furthernore, given the rapid changes in | ocal 2. wy; = 1, if plots i and j are first or
topography that are possible in the study area, second nearest neighbors, otherw se
it is reasonable to set wij = 0 when there are = 0.
several plots between i and j. Gven that (1) is These weights are not symmetric, but this does
bei ng used primarily as an exploratory device, not cause any problems. In each case, a distance
these guidelines may be incorporated into the set criterion was uysed to eliminate linkages across
of weights by use of nearest neighbor |inkages very long distances. The sets of neighbors are

(Aiff and others 1975). The exact specification
of weights is not critical. Thus two gets of
wei ghts are considered:
1. wij = L, if plots i and j are nearest
nei ghbors, otherw se
= 0.

34

sunmarized in (B) of the Appendix. These weights
were used in all subsequent analyses. A program
listing for a sinple FORTRAN program to conpute I
and the corresponding standard deviate is listed
in the Appendix (A). For the first nearest
neighbor, SO = 42, S| = 68, and S2 = 192. For



Table 9.--Residuals from ordinary |east squares regression for RES20,
RES10, PCT20, PCT10, respectively

Cbservation RRES20 RRES10 PCRES20 PCRES10
1 46. 334 -15. 807 0.26047 -0. 04145
2 -21.678 -19.937 -0.13374 -0.12678
3 -31.993 -15. 635 -0. 14916 -0. 08203
4 -20.136 -40. 225 -0. 25344 -0.21953
5
6 14. 431 10. 602 0.10100 0. 12306
7 -10. 443 -28.935 -0.07859 -0.13183
8 59. 306 83. 942 0.21011 0.17438
9 -12.145 -15. 249 -0.11850 -0. 11506

10 -14. 668 -30. 645 -0.11789 -0. 24663
I -17.193 -37.930 0. 08391 0.00267
12 -11. 397 -3.404 0. 04620 0.01085
13 23. 945 42.668 0.14752 0. 25374
14 55. 349 30. 302 0.27781 0.23123
15 -10. 846 14. 604 -0.10033 0. 05556
16 59. 557 63. 661 0.37119 0. 14592
17 11.190 2. 355 0. 07027 -0.03010
18 12.921 -18. 585 0.09821 0. 04559
19 -17.522 -10.792 -0.29572 0. 02309
20 -39.395 -19. 506 -0.13238 -0. 02975
21 -80.534 -35.373 -0. 27386 -0. 03539
22"

23 -12.884 22.290 -0.05130 0.16258
24 -8.476 51. 982 -0. 03284 0.27436
25 -25.229 -12.730 -0. 13405 -0. 16915
26 22. 956 -0.910 0.10552 0.02366
27 -2.885 -14.081 -0. 04947 -0. 13986
28 |'l.355 7.095 0.05162 0. 04954
29 -14. 474 2. 247 -0.07823 0. 00537
30"

31 -44. 763 -21. 355 -0.19854 -0. 14849
32 -15.831 25. 363 -0.08487 0. 08936
33 -11.938 1.136 -0. 07265 -0. 00901
34 51.827 15. 167 0. 31837 0. 14705
35"

36 -10. 105 -11.982 -0.10263 -0.06974
37 16. 486 8.212 0. 04258 -0.01989
38 -6. 060 -41. 126 -0. 00886 -0.16374
39 9. 809 -32.049 0.03889 -0. 00258
40 17. 441 -5.710 0. 13757 -0. 01437
41 50. 106 23.982 0.19884 0.01594
42 -15.341 -22, 285 -0. 02459 -0.07543
43 44,717 46.526 0.26187 0.26913
44 9.138 28. 242 0. 05684 0.07427
45 -61.570 -18. 162 -0.47302 -0.20437
46 2.029 -10. 456 0. 02660 -0. 08615
47 -31.393 -16. 830 -0. 18230 -0.17132
48 30. 003 19. 321 0.24156 0. 15529

different
can be assumed the set
and second order nearest

autocorrel ation

and second neighbors, SO = 80, 51 = 138
and S2 = 670.
results for
width measures are summarized in table
autocorrelation generally appears
based on the second -nearest nei ghbor
G ven that

the four initial residua
I,

to

nei ghboring plots

aspects oOf

of weights
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coefficients were also
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anal yses shown in tables 9 and 10
are presented in table 12.
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used to obtain table II.

very
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However,
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Table 10.—Residuals from weighted |east squares regression for RES20,
RES10, PCT20, and PCT10. resnectivelv
(oservation RRES20 RRES10 PCRES20 PCRES10
1 46. 282 -21.521 0.24740 -0. 06286
2 -27. 445 -27. 201 -0.17263 -0.16189
3 -35. 316 -22.902 -0. 16155 -0.10963
4 -14. 947 -45.974 -0. 28882 -0. 23249
5
6 12.526 12.103 0.07637 0. 13770
7 -8.492 -27. 345 -0. 08494 -0. 12596
8 56. 781 77,765 0.20111 0. 14621
9 -11. 847 -16. 480 -0.14614 -0.14344
10 -19. 367 -33.018 -0. 16035 -0.27380
[ -7,760 -41.048 0.11976 -0.01109
12 -23.543 -5.178 0. 06126 0.02172
13 18. 035 38.016 0.08884 0.21764
14 57. 645 26.732 0. 25975 0. 22866
15 -18.072 10. 880 -0. 14416 0. 03250
16 37.223 58. 788 0.19865 0.09214
17 5.943 -4.243 0. 05390 -0. 05542
18 23.991 -23.934 0.13074 0.02145
19 - 20, 837 -18. 059 -0. 32424 -0. 00782
20 -42.430 -26. 236 -0. 15413 -0. 04206
21 -76. 887 -37.081 -0. 27356 -0. 03565
22"
23 -17.231 19. 823 -0. 08004 0.16041
24 -4,281 51.511 -0.03817 0. 25346
25 -37.022 -14. 344 -0. 13453 -0. 16752
26 28. 356 -0.332 0. 08779 0. 01210
27 -2.566 -15.003 -0.04214 -0. 15656
28 13.939 6. 884 0.10000 0. 06398
29* -35.314 -5.038 -0. 19339 -0. 01416
30
31 -48.186 -28.191 -0. 20507 -0.17886
32 -25. 403 26. 303 -0. 09078 0.12401
33 -23. 449 -6.225 -0. 13246 -0.01701
%4 56. 338 9. 554 0. 34085 0.12116
5"
36 -18.279 -14.585 -0. 12892 -0. 05920
37 17.310 7. 456 0. 02603 -0. 04263
38 -9.898 -48.106 -0. 01409 -0.16916
39 22.400 -31. 660 0. 09583 0. 02397
40 19. 639 -2,465 0.12665 -0. 02988
41 44.136 20.611 0. 15549 -0.00942
42 -21.431 - 26. 640 -0. 06461 -0. 10528
43 44,173 43.168 0. 25985 0. 25656
44 5.930 26. 627 0. 04146 0. 05310
45 -59.933 -15. 349 -0. 47767 -0.21879
46 -4.259 -10. 251 0.00789 -0.07634
47 -31.989 -17.088 -0. 23592 -0.16713
48 28. 479 19,917 0. 28237 0.17932

* Plots elimnated from study becadse no red spruce was presented

provide any degree of explanatory power, and the
spatial pattern of the residuals is essentially
the same. The next question is whether the
bi oti c factors account for some or all of the
spatial structure,

When tables Il and 12 are compared, it may be
seen that the level of spatial autocorrelation
has dimnished in all cases. For the variable

PCT20, the autocorrelation has become negative

but this my be due to the uncorrected effects of
autocorrel ations anong the explanatory variables

One nmay generally conclude that the regression
anal yses account for much, but not all, of the
spatial pattern found in the residual ring wdth
val ues. However, one should recall that the
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Table 11.--Results of tests for spatial autocorrelation among original
ring width residuals

Variabl e+ Coefficient" Standard Deviate"
NN1 NN2 NN1 NN2
RES20 0. 256 0. 425 1.48 3.21
RES10 0. 388 0. 466 2.15 3. 47
PCT20 0.194 0.324 1.17 2.53
PCTI O 0.314 0.403 1.78 3.05

* RES20 and RES10 refer to the residuals from the time series nodels for
ring widths averaged over the forecast periods, 20 and 10 years,
respectively. PCT20 and PCTIO denote RES20 and RES10 divided by the
overall nean ring width for the whole series.

NN1 and NN2 refer to the sets of weights for the spatial autocorrelation
coefficient based wpon first and wuwpon first- and second-order nearest
nei ghbors, respectively.

Table 12.--Results of tests for spatial autocorrelation among regression
residuals™®

Vari abl e Coefficient Standard Deviate
NN1 NN2 NN1 NN2

Unwei ghted  Regression

RES20 0.018 0. 054 0.22 0.55
PCT20 -0.187 -0. 205 -0.85 -1.28
RES10 0.277 0, 287 1.57 2.20
PCTI O 0.093 0.203 0. 60 1.59

Vi ghted Regression

RES20 -0.082 -0.133 -0.30 -0.76
PCT20 -0.292 -0.393 -1.39 -2.59
RES10 0. 266 0.268 1.51 2.06
PCTI O 0.087 0.202 0.57 1.57

1/see table 11 for definitions of variables, coefficients, and standard
deviates. Regression residuals are listed in tables 8 and 9.
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rel ative decreases of first and second order
nearest neighboring plots. These findings should
be conpared to those generated by other
approaches to gain an understanding of the impact
of certain key decisions in the stages of the
anal ysi s.

Both Landau and others (1985) and Cook (1987)
recommended that  annual basal area growh
increment is preferable to ring wdth as a
measure oOf annual productivity. Use of this
measure Could have reduced the nonstationarity in
several of the time series. One approach to tine
series that display marked trends is to transform
the data (Cook 1987). Instead, we followed the
usual ARIMA paradigm and differenced the series
where there were marked trends; 20 of the 44
series actually required differencing. It would
be useful to conpare forecasts obtained from the
untransformed, but possibly differenced, series
to those obtained from transformed series.
Additionally, the average of the ring width of
the trees' coreg that net our inclusion criteria
was used. Landau and others (1985) recomended
the use of trimmed means. Specific circunstances
of other data sets may determine the advisability
of one procedure over another as the best way to
mnimze heterogeneity.

The nethods used in each of these steps are
capable of further refinenent, and several
suggestions are included in the Recommendations
section. Nevert hel ess, the basic paradi gm
represents a substantive approach to the
evaluation of recent trends in the width of tree
rings.

Results obtained from the steps taken in this
study should be conpared with results generated
from other approaches. Future studies might
include the use of basal area i ncrenent rather
than ring wdth as a measure of annual
productivity and may incorporate transfer
function nodel s of climatic factors as well as
intervention analysis to filter out the effect of
inmportant forest perturbations.

RECOMMENDATIONS

1. Following Landau and others (1985), it is
recommended that future studies should use
incremental basal area rather than ring
wi dt h.

2. The possibility of using trinmed means rather
than arithnmetic means should be considered.
However, the issue of how well measurenments
on five healthy trees refiect overall stand
health requires further examnination.

3. It is inportant to look for changes in ring
width or other indicators relative to what
m ght be expected. The forecasting approach
used in this report is one way of excluding
such trends, but others should be exani ned.
The study of proportional changes seens
preferable to that of absolute changes.

4, In future time series analyses, automated
procedures mght be wused (AUTOBOX, devel oped
by David Reilly of Automatic Forecasting
Systens, Inc.).

5. Wiere known problens of fires, aphids, or
infestations occur on particular plots,
intervention analysis should be used to
filter out such effects.
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6. The inclusion of biotic variables in the
regression nodels serves to link the change
indicators to stand health. However, it does
not resolve how the stands came to be in that
condi tion. The 1lack of any worthwhile
correlations between the indicators and the
| ocati onal variables suggests that other
factors may be at work in deternining stand
heal t h; furthernore, the high Ievels of
spatial autocorrelation in the ring width
change data indicated that such factors are
spatially concentrated.

7. The extremely variable t opography  and
locations of the sites suggest that purely
spatial nmodels (diff and Ord 1981) are
unlikely to be of direct value in this
study. However, the potential exists for
worthwhile applications with nore homogeneous
clusters of sites.

8.  Future analyses could include transfer
function models involving climatic
variables, once detailed nodels of these
vari abl es have been devel oped.
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APPENDI X

FORTRAN program for conputing the spatial
autocorrelation coefficient

(A Program

DIMENSION Z(100), X(100), NPLOT(100), NN1(100),
NN2(100), *WT1(100), WT2(100, NCROSS(250)
READ, N

READ, sol, s11, S21, S02, S12, S22

SUMX=0.0

DO 10 1-1,N

READ, NP, N1, N2, NREF

NPLOT (I)=NP

NN1(I)=N1

NN2 (1)=N2




NCROSS( NP) =NREF
CONTI NUE
DO 15 1-1,N
READ, XA
SUMX=SUMX+XA
X(I)=XA
CONTI NUE
SUMZZ=SUMZ4~0 . 0
SAC1=SAG2=0.0
XBAR=SUMX /N
DO 20 1=1, N
Z(1)=X(I)-XBAR
SUMZZ=SUMZZ+Z (1) **2
SUMZ4=SUMZ4+Z (T ) **4

20 CONTI NUE

B2=N#SUMZ4 / (SUMZZ#*2)
PRINT, 'KURTOSIS=',B2

DO 30 J=1,N

KA=NN1(J)

KB=NN2(J)

KC=NPLOT(J)

| F (KA.EQ.0) GO TO 30

JA=NCROSS (KA)

JC=NCROSS (KC)

SAC1=SAC1+Z(JC)*Z(JA)

IF (KB.EQ.0) GO TO 30

JB=NCROSS( KB)

SAG2=SAG2+Z(JC)*Z(JB)

30 CONTI NUE

SAC2=SAC1+SAC2

SAC1=SAC1/SUMZZ

SAC2=SAC2/SUMZZ

SD1=N# ( (N*N-3%N+3)*S11-N*S21+3*S01*S01)
SD1=SDI -B2% ( (N*N-N)*S11-2*N+S21+6%S01%S01)
SD1=SD1/((N-1)*(N-2)*(N-3)*S01*S01)
SD1=SD1-1.0/(N-1)%*2

SD1=SQRT(SD1)

SD2=N+* ( (N*N- 3%N+3)*S12 -N*S22+3%502%502)
SD2=SD2-B2% ( (N*N-N)*S12-24N*S22 +6%S02%502)
SD2=8D2/ ( (N-1)*(N-2)%(N-3)*S02*S02)
$D2=5D2-1.0/(N-1)**2

SD2=SQRT(SD2)

PRINT,'SD1=',SD1,’SD2=',SD2

PRINT, ! SPATIAL A/c FOR FIRST NN IS ’,SACl
PRINT," SPATIAL A/C FOR SECOND NN IS ’,SAC2
SAC1=(SAC1+1.0/(N-1))/SD1

SAC2=(SAC2+1 0/(N-1%%4§D2

PRINT, 'STD. DEVIATE FIRST NN IS ',SACl
PRINT, *STD. DEVIATE FOR SECOND NN IS ',SAC2
STOP

END

NN2, AND NCROSS)

(continued)
32 54 55 29 15 13 37 14
54 32 55 35 158 0 0 42
55 54 32 36 13 37 36 12
7 159 207 6 37 36 13 33
159 6 7 43 36 37 13 32
6 159 75 132 0 0 40
207 7 159 44 125 4 0 39
153 6 159 41 4 125 0 4
12 9 25 11 34 29 33 31
925128 29 33 34 27
25 9 12 23 33 29 34 30
26 27 25 24 31 46 8 28
27 26 10 25 46 17 8 34
10 Il 113 9 17 8 46 16
113 10 Il 38 8 17 46 7
[l 10 113 10 19 18 0 18
21 11 10 20 18 19 0 17
28 23 |1 26 22012
23 24 28 21 201 2 19
24 23 14 22 12021
14 24 23 13 31203
16 109 14 15
109 16 14 37

(B) Plot  Number--first nearest neighbor--second
nearest neighbor-- order of plot 4in listing of
values (required inputs to wvectors NPLOT, NN1,
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A Fractal Approach to Analysis of Tree Ring Increments

R A J

SUMMARY

Information from plots established in the Geat
Smoky Mountains by the National Park Service and
the Tennessee Valley Authority was wused to
determ ne annual tree ring widths from core
sanples of red spruce (Picea Rubens Sarg.). The
red spruce core samples showed a significant
dependence of variance on the mean size of tree
rings at 67 of 68 plots. At 9 of 48 plots, the
variance has increased nore rapidly since 1943;
of the others, 7 have shown a decrease gince 1940
and 32 showed no change. The dependence of
variance on Mean of a neasurenent was interpreted
in terns of "fractals," a term coined to denote
fractional dinension. The change in fractional
di mensi on over time indicated an evol uti on of
factors that influenced the dependence of
variance on nean; these factors may have been
successional, climtic, or anthropogenic, all of
whi ch seenmed to vary on about the same tine
scale. It was concluded that variance-nean
analysis may be an inexpensive and promsing area
of inquiry in dendrochronol ogy.

INTRODUCTION

Mortality of large forest areas in several
parts of the world has caused fear that the
concentration of anthropogenic conpounds in the
atnosphere may be increasing. Acids and other
oxi dizing agents of human origin, notably ozone,
have been detected in the atnosphere and are
probably capable of interfering with tree growth
and survival. However , there are no data
concerning the level of atnospheric pollution
(Cook 1987, Kiester and others 1985). Therefore
other possible influences and causes must be
considered, such as the effect of c¢limate on tree
ring growh. Because climate and anthropogenic
effects are easily confounded, this report wll
focus on the analysis of change and not on
di stinguishing between pollution and eclimate.

Annual tree rings in tenperate regions provide
a convenient record of a tree's growh history.
Conparison of tree rings over a geographical area
has frequently been used to determ ne climatic
changes; it s assumed that patterns common to
all trees of the same species, simlar age, and
in the same soils should respond alike to weather
conditions that are basically unvarying (Creber
1977, Cuiot and others 1982).

BACKGROUND

It is commonly assumed that the width, Wt), of
a tree ring laid down in year t {g the linear sum
of four systematic components and a random
component:

Tayl or

Wt) = A(t) + B(t) + C(t) + D(t) + e(t)
wher e
A(t) = age factor(s) unique to each tree,
B(t) = disturbances unique to each tree,

C(t) climatic effects common to all trees at
a site,

D(t) = disturbances common to all trees at a
site, and

e(t) = random component.

It may be helpful to review some of the
assunptions frequently nmmde about Wt). The
successi ve inerements are assuned to be
identically distributed. For the benefit of
certain analyses, the increments are further
assumed to be statistically independent, with the
marginal distribution, e(t), Gaussian wth zero
mean, and constant variance. Such a time series
is called a stationary Gaussian random walk or
Brownian notion. While no one working in
dendrochronol ogy seriously expects the Brownian
assunption to be wvalid, the nature of statistics
often demands that it be assuned.

The concepts of randomess  are  context
dependent, and the word nay be used in a

confusi ng manner . There are two broad,
alternative definitions of  randommess:
"predictable behavior, efficiently described by a
statistical probability distribution" and

"haphazard behavior, governed by no known rules"
(Mandel brot  1967). In addition, events in which
the mean and wvariance are equal (Poisson
di stribut ed) are often said to be random
Predictable behavior ig synonynous with
stochastic and differs from deterninistic because
its expected or average outcome {s predictable,
while the specific outcome of a trial lies within
certain bounds defined by the variance.

As stated above, sStatistical independence of
successi ve increments is a well-known
sinplification. The assunption of stationarity,
however, has a special inplication that is rarely
questi oned: the sanple nonments vary little from
sanple to sanple, provided the sanples are large
enough. In our analysis, this assunption is
relaxed, and the assunption is nade that the
variance is infinite or at least so large that it
may be treated as infinite. Thus the assunption
of Gaussian nmarginal distribution is abandoned in
favor of the Cauchy, pernitting the Central Linit
Theorem to be invoked without assumng constant
variance (Mandelbrot 1969). Therefore the need
to amend the other assunptions of independence
and stationarity is alleviated (Berger and
Mandel brot  1963) .

The assunption of infinite wvariance is
equivalent to assuming randomess that is
predictable but haphazard; the long-term trend fis
evi dent, but the short-term signal 1is
unpr edi ct abl e. Theory expounded by Mandel brot

R AJ. Taylor is research scientist in the Department of Entonology, Ohio

State University, Woster, OChio.

40




(1960, 1963, 1969) related haphazard time series

with power laws and distributions with infinite
variance.

THEQRETICAL METHODS

Consi der the series x(t), t =1,2,...,n, of
observations taken at equal intervals of tine or
space. Any particular series [x(t)] is assuned
to be the realization of a process Wt) that wll
be defined later; t 4{s used aS an indicator
variable at equal intervals of tine or space.
Defining the followi ng variables:

V(k) = E[x(t) t+k];]2 = 2[V(x)-C(x;K) ],
V(x) = [X(t) -M(x)
M(x) = E[x(t)],
C(x;k) = E{[x(t)-M(x)][x(t+k)-M(x)])}.

V(X) is the wvariance of the series with Mx)
the  nean. Theory based on the usual
interpretation of the Central Limt Theorem
pernits one to assume that these paraneters
estimate population val ues. However, in this
anal ysis the assunption is not necessarily valid:
the parameters sinply represent the sanple values
and are therefore not asynptotic to the
popul ati on val ues. C(x; k) is the
spatial/temporal covariance across the data and
is related to the standard treatnents of
time/space Series data, including tree ring
analyses (Quiot and others 1982). Information is
given in C(x;k) on the regular variations in the
data at periods equal to k. The variogram is
V(k) and provides information on the nonregular
variation at lag k.

Consider V(k) as k varies: dividing V(k) =
2{V(x)-C(x;k)} through by WV(x) gives V(k) =
2V(x){1-R(k)}, where R(k) is the serial
correlation coefficient that takes values
-1<R(k)<l; therefore V(k)=2rV(x){1l-r}, O<rs2, and
0<V(k)<V(x). Thus:

V(k) = 0 when serial correlation at lag k is

1;

V(k) = 2v(x) when no serial correlation at |ag
k, and

V(k) = 4v(x) when serial correlation at lag k
is -1

At any specific value of k, say k*, V(k) will
give information on all variations not having a
cyele at k.

To obtain information on all variations, V(x)
fs comonly used, but we cannot say what
variation we have at t =i, only that it is over
the interval t = i,i+l,i+2,..., and so forth.
Ideally, the wvariance would be partitioned in the
manner of V(k) but without limtation. |If k goes
to zero, all scales of variation are included and
simul taneously V(k)  disappears. To estimte
v(0), conpute V(k) for k>0 and extrapolate back
to zero. To obtain the rate of approach of V(k)
to the origin, plot logV(k) against log(k) and
determine the gradient, dlogV(k)/dlog(k) = R as
k->0

Another approach to estimate the gradient of
V(0) is to replicate the generating process Wt):
Wi(t), Wa(t),....; V(0) can then be estimated at
any or allt. The estimates Vi(O are all at the
origin, so the gradient nmust be extracted from
them Plotting the means and variances of
several series against tine shows that the actual

values vary according to no particular pattern;
however, it nust be noted that the magnitude of
V¢(0) seens to increase With time (figs. 1-8).
Since Vi (0) is partly dependent on Mq(0),
standardizing V.(0) with M.(0) my show a trend.
Figures 1 through 8 also schow the coefficient of
variation (/Ve(0)/Mc(0)} increasing with tine.

Figure 9 plots logV(t) against 1logM(t) and
shows how the wvariance increases With regpect to
mean. The gradient dlogV/dlogh = b is an
estimate Of R This is easily denonstrated by
the following argument. Define a reference nean
MO and a conparison mean Mg = sMQ (s>1). Now Vg
= aMob and Vg = Sb = a(sMo) = sb(amo ) = stO.
Evidently the wvariance is scale independent, and
its gradient b is an intrinsic component, as
expected from dlogv(k)/dlog(k).

Taking logs: logVg = logVp + blog(s), remenber
that VO is a variance corresponding to an
arbitrarily chosen mean MO VO is thus also
arbitrary; MO can be chosen such that VO is L1
Thus 1og = blog(s), which is wvery nearly
[ ogV(k I-selog Al'though k and s are not quite
synonyrmus if rmltipl es are chosen as values of
s, then 1logV = blog(i) + C describes the locus of
variance at spatial/tenporal intervals i =
1,2,..., and is, except for C,  identical to
logV(k) = RlogK. Therefore R = b.

The same result can be obtained from an
enpirical argunent. Let there be a series of
sanples taken along a transect AR Divide AR
into NK intervals such that there are N groups of
K intervals. Nei t her the K groups nor the N
groups need to be contiguous, but for sinplicity
it is assuned that they are. The number of
entities in each of the NK intervals is counted.
In the present case, the size of the tree ring
increment is nmeasured:  x;; Where x is the size
and i =1,2,...,Nandj =1,2,... Now conpute
the nean M and variance Vi for each of the i =
1,2,...,N groups from

M = 5x; 13/K Vi = B(xii-M3)2/(K-1).

Let the central interval of each group become
the center of mass for that group. The center of
mass has at least two parameters describing the
distribution of observations within the group:
M and Vi.

If 1logv is plotted against logM, enpirically
they are related by the power law, V = aMb, wher e
a and b are enpirically estinable parameters
(Taylor 1961, Perry 1981). Consider  the
arbitrary series xj* (j = 1.2 ...,K) that has
mean and variance M and v¥; now conpute the
serial covariance C*(k) havi ng 1ag k, from

c*0) = E[x;¥ - M [x55 - M.
From V" and € ((Ilc) the variance of increments ig
conguted
V¥(k) = E(xy* - x5 M2 = 2V - C(K)].

Half \V*(k) 1s referred to as the variogram and
its conputation ig the first step in the
interpolation process known as kriging (Journel
and Huijbregts 1978). The covariance term is
C'(k) and is related to the systematic part of
the ring increments, particularly growth at small
k. At larger Kk, long-period variations such as
climatic cycles predomnate. Filtering
techniques (Quiot and others 1982) concentrate on
the structure of C*(k) over varying periods of
tine. The total variance of the series V
contains both the systematic and nonsystematic
vari ance.

41




42

MEAN

100

50

ANNUAL TREE-RING WIDTH = SITE 1 (1850 =— 1984)

T T T T Y

T T T
1850 1870 1890 1910 1930 1950 1970 1990

18000

15000

12000

9000

8000

3000

YEAR

VARIANCE OF TREE-RING WIDTH

ESNTY PYRPES FUTY

N PESTTY FOTTIN|

lasas

il

T T Vevrer- T T T Y r
1850 1870 1890 1910 1930 1950 1970 1980

C

09

08

03

COEFFICIENT OF VARIATION

0.0

Figure [|.--Time

YEAR

OEFFICIENT OF VARIATION OF TREE-RING WIDTH

1850 1870 1890 1910 ,930 €30 1970 1990

series of mean, yariance, and coefficient of variation

tree-ring increments from 1850 to 1984 at Tennessee Valley

Aut hor

ity site 1.

of




MEAN ANNUAL TREE-RING WIDTH = SITE 9 (1850 — 1984)
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Figure 2.--Time series of nean, variance, and coefficient of variation of
tree-ring increments from 1850 to 1984 at Tennessee Valley
Authority site 9.
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MEAN ANNUAL TREE-RING WIDTH — SITE 23 (1850 =— 1984)

3504
300
250

200

MEAN

150

100

50
1850

50000

40000

30000

20000

VARIANCE

10000

1870 1890 1910 1930 1850 1970
YEAR

VARIANCE OF TREE-RING WIDTH

1850

1670 1970

1980

COEFFICIENT OF VARIATION OF TREE-RING WIDTH

0.9
08

0.7

VARIATION

06

05

04

03

0.2

COEFFICIENT @

01

1650

1870 1890 1910 1930 1950 1970

YEAR

Figure 3.--Tine series of nean, variance, and coefficient
tree-ring increments from 1850 to 1984 at Tennessee Valley
Authority site 23.

1990

of wvariation of




MEAN ANNUAL TREE-RING WIDTH == SITE 36 (1850 — 1984)
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MEAN ANNUAL TREE-RING WIDTH — SITE 307 (1901 -~ 1984)
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Figure 5. --Time series of nean, variance, and coefficient of variation of
tree-ring increments from 1850 to 1984 at National Park Service
site 307.




MEAN ANNUAL TREE-RING WIDTH == S|TE 310 (1901 — 1984)
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MEAN ANNUAL TREE-RING WIDTH = SITE 321 (1901 — 1984)
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This study focuses primarily on the systematic
variance commobn to all trees at a site.
Therefore the variance across all cores at a site
in each year was calculated to form the series
Ve. The common systematic conponents at a site
formed a baseline from which all other conponents
of wvariance were referenced. To find the common
systematic conmponent,  variance was plotted
against mean to standardize variance. The nmean
was assumed to be linearly related to the
basel i ne.

Also to be noted is the change in the conmon
conponent , represented by the change in V¢
relative to M¢. Changes between the relationship
of Vi and My indicate changes in the normal
behavior of the process Wt). Changes result
from evolution in the process variance. If a
long-term change is anticipated, then evolution
in the system process can be denonstrated by
deternining differences in the rates of change of
variance before and after the reference point.

PROCEDURE

O the plots established by the National Park
Service (NPS) and the Tennessee Valley Authority
(TVA), only those with five or nore red spruce
trees in the sanple were selected for analysis.
Wth 2 cores (series) per tree, means and
variances for each year from the beginning of the
series  were computed from 10 ring wdth
estimates. Series ranged in length from 40 to
135 years. These data yiel ded 20 bivariate
series with length of approximately 84 years (NPS
data), and 48 series with lengths varying from 40
to 135 years (TVA data). The | ogarithm of
variance was then regressed on |0g nmean with each
point representing 1 year.

RESULTS

Figures 1 through 8 show the nmean (M, wvariance
(V), and coefficient of wvariation (CV) against
time at TVA sites 1, 9, 23, and 36 and NPS sites
307, 310, 316, and 321. Both the nean and
variance were highly variable, and the plots of
CV against time gave the strong inpression that
the variance was increasing with tinme.
Fur t her nor e, the detailed behavior differed
greatly from site to.site. Figures 9 through 16
show variance-nmean regression plots for the same
8 sites, and table 1 shows the results of
regressions of 68 sites. Sixty-seven regressions
were significant at probabilities of less than
0. 05. Only site 113 showed no dependence of
variance on NMEaN.

To investigate the possibility that conditions
in the post-World War |l era were different from
prewar conditions, the data of sites wth runs
|onger than 80 years were split at 1943 and the
variance-nean regressions repeated to test the
hypothesis that the acceleration of wvariance with
mean has changed. Table 2 shows that of the 28
TVA data sets suitable for analysis, 8 showed
increases in dependence, 18 showed no change, and
none showed a decrease in dependence. There were
two sites with a nonsignificant regression.
Interestingly, the NPS data showed the reverse
pattern: only one site showed a significant
increase in variance-mean dependence since 1943,
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nine sites showed no difference and seven showed
a significant decrease since 1943, three sites
had a nonsignificant regression.

Prelimnary analyses with nultivariate methods
(principal conponents analysis, PCA) failed to
identify any differences in regression gradient
attributable to differences in the two data sets.
Variables included in the PCA were annual
rainfall, mean  annual maximum and minimum
tenperatures, <xeric/mesic status, altitude, and
stand basal area.

DISCUSSION
Tree rings reflect the net effect of age,
health, soil, and biotic conditions on tree
growt h.
Age and health are unique aspects of each
i ndi vi dual tree, but t he envi ronnent al

conditions experienced by all trees in close
proximity are considered similar or conmon
external factors. However, conpetition is one
agspect Of a tree's external environment that is
considered UNi que.

Therefore three influences of growh can be
establ i shed:

1. Age/growt h---unique internal factors,

2. Competition---unique external factors, and

3. Environment---common external factors.

Wen sanples are composed Of mature and/or old
trees, the age-dependent variance wll be

relatively small and may even be nissing in the
younger trees. Wien very young and very ol d
trees are included in the sanple, age/growh is
likely to have an impact only in the early part
of a series and variances 'are higher than nornal.

Conpetition between trees in the sample nay
help one to understand the dependence of variance
on mean. For a given value of the nean, a high
variance indicates a wider range of individual
responses. As the nean increases, the dependence
of wvariance on the nean suggests that only some
elements of a sample are increasing, while others
my be decreasing or increasing very little. If
increases in tree ring width were all equal at a
site, the wvariance would be increasing
proportionately and b = 1. The nean value of b
was 1.77, suggesting that at the najority of
sites, when conditions were conducive to growh
increases, only some trees responded. A change
in b over tine was interpreted as a change in the
relative conpetitiveness of the trees at a site
due to a change in the external conditions.

CONCLUSIONS

Because the relationship between variance and
mean ig still uncertain, no definite conclusions
can be made about the influences on tree growh.
Because the nature of fractional dinmension is
still poorly understood, the theoretical
treatnent is not rigorous. Only since the
publication of Mndelbrot's book (1982) has there
been an increased awareness and interest in
fractals anong scientists other than topol ogists.

The ideas developed in this analysis were
prelininary, but the reduction of the masses of
tree core data to a single paraneter, b, was a
new contribution to statistical net hods in
dendr ochr onol ogy. However, the results of
splitting the data into two sections were
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i nconcl usi ve. A reduction in variance in recent
years at each TVA site may be indicated by the

TVA data, while the NPS sites have become npre
vari abl e. If this is so, the difference between
the two data sets nust be determned. The
results of the PCA were also inconclusive, but

the set of site characteristics used in the
analysis was very small.

The fractal approach to the analysis of
ring widths is a prom sing area for
research. However, this nethod may not
identify anthropogenic influences on tree growh;
change may be determined, but the cause of
change MYy still require carefully controlled,
long-term large-scale forest experiments.

tree
further
help to

that

Table 1. --Regression analyses of the log (variance) against log (mean) of
tree ring increments
Site Standard Adj ust ed F- o
No. N Log(a) b error of b R? ratio  Significance

Tennessee Valley Authority Plots

1 135 1.38 1.05 0.126

2 71 -0.72 1.84 0. 346

3 88 1.50 0.96 0. 159

4 92 -1.98 2.55 0.194

5 35 -1.04 1.90 0.587

6 96 1.83 0.77 0.319

7 loa 0.41 1.55 0. 145

8 57 -1.02 2.05 0.223

9 135 -0.32 1.85 0.122
10 135 1.18 1.06 0.204
11 45 1.56 0.94 0. 246
12 125 0.10 1. 64 0.176
13 45 -3.22 3.08 0.549
14 43 0.92 1.28 0.239
15 57 2.02 0.74 0. 206
16 64 0.90 1.19 0. 147
17 80 0.21 1.57 0.144
Il a 65 2.05 2.63 0.151
19 128 -0.50 1.81 0. 107
20 115 0.16 1.52 0.131
21 26 -2.81 2.71 0.971
22 100 1.91 0.80 0.148
23 135 -1.06 2.13 0.118
24 106 -1.94 2.52 0.124
25 135 0.51 1.42 0.161
26 115 1.23 1.06 0.163
27 135 0.77 1.31 0. 206
28 132 0. 65 1.28 0. 266
29 95 -0.34  1.93 0.199
30 25 -3.47 3.10 0. 809
31 61 -0.02 1.56 0.195
32 54 3.00 0.36 0.172
33 47 0.40 1.57 0.263
34 125 1.92 0.71 0.081
35 34 1.98 0.83 0. 401
36 135 -4.28 3.68 0.249
37 134 1.29 0.96 0. 100
46 135 -0.22 1.86 0.091
54 135 -2.46 2.74 0.290
55 85 -0.97  2.17 0.228
109 53 -0.87 1.91 0.218
113 46 2.73 0.49 0.394

Tennessee Valley. Authority Plots

125 40 1.10 0.96 0.272
132 90 0.73 1.30 0.137
153 100 0.25 1.58 0.113
158 87 1.13  1.14 0.074
159 50 -6.99 4.37 0.751
207 48 -2.47 2.62 0.311
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Tabl e 1.--Regression analyses of the log (variance) against

tree ring increments--Continued.

log (nean) of

Site Standard  Adjusted F-
No. N Log(a) b error of b R2 ratio  Significance

National Parks Service Plots

301 84 -1.50 2.60 0.187 0.70 193.0

302 84 -0.88  2.05 0. 205 0.54 100.0

303 84 -1.57  2.58 0.201 0. 66 164.0

304 84 2.04 0.75 0.237 0.10 10.1 *k

305 84 0.04 1.63 0.111 0.72 214.0

307 84 -0.20 1.88 0.121 0.74 242.0

308 84 -1.75 2.62 0.352 0.40 55.4

309 84 -2.46 2.88 0.332 0.47 75.1

310 84 -1.25 2.38 0. 150 0.75 253.0

311 84 0.05 1.66 0.164 0.55 103.0

312 84 0.72 1.36 0. 154 0.48 78.4

313 83 0.16 1.54 0.501 0.09 9.5 *%

314 83 1.12 1.11 0.284 0.15 15.4 Fkk

315 84 -1.90 2.54 0. 207 0. 64 152.0

316 84 1.63 0.73 0.244 0.10 0.9 %k

317 84 -0.13 1.72 0.169 0.55 104.0

318 84 -1.23 2.36 0. 250 0.52 89.1

319 84 -1.82 2.51 0.217 0.61 133.0

320 84 -0.60 2.11 0.142 0.73 221.0

321 84 -0.62 2.00 0.123 0.76 263.0

*+ All regressions are significant at P <o.
P <0.05, %% = P <0.

N/S =

Tabl e 2.--Regression anal yses of
ring increments before and after 1943%

not significant,

P -

the log(variance) against

0001, except Wwhere indicated:
01, %% = P <0.001.

| og(nean) of

tree

Site Pre/ Standard Adj ust F-
No. post N Log(a) b error of (b) R? ratio Signif.
Tennessee Valley Authority Plots
1 0 93 1.04 1.26 0.158 0. 40 63.2
1 42 -0.43 1.77 0. 546 0.19 10.6 *=*
3 0 46 2.32 0.60 0.274 0.08 4.8 *
1 42 0.38 1.47 0.187 0.60 62.1
4 0 50 -0.65 1.97 0.341 0.40 33.4
1 42 -2.28 2.73 0. 190 0.83 206.0
b 0 54 3.48 0.12 0. 300 0 0.2 N/S
1 42 0 1.51 0. 535 0.14 8.0 #%
7 0 66 -0.65  2.05 0.220 0.68 86.5
1 42 -0.65 2. 05 0. 220 0.68 86.5
9 0 93 -0.23 1.79 0. 147 0.61 147.0
1 42 -0.54 2.00 0.202 0.70 97.6
10 0 93 0. 36 1.44 0.213 0.33 45.7
1 42 4.35 0 0 0 1.0 N/s
12 0 83 0.44 1.49 0.184 0.44 66. 2
1 42 -0.82 2.04 0.508 0.27 16.1  #%+*
17 0 38 -0.91  2.02 0. 560 0.24 13.0 ***
1 42 -1.03 2.18 0.226 0.69 93.0
19 0 86 0.08 1.54 0. 160 0.52 92.0
1 42 -0.90 2.02 0. 225 0.48 38.7
20 0 73 0.14 1.54 0.171 0.52 79.6
1 42 0.78 1.26 0.252 0. 37 25.0
22 0 58 1.69 0. 87 0. 302 0.11 8.4 %%
1 42 0.87 1.28 0.247 0.39 27.1
23 0 93 -0.96  2.07 0.178 0.59 134.0
1 42 -0.91 2.07 0.292 0. 66 80.4




Table 2.--Regression analyses of

ring increments before and after

the |og(variance)

agai nst

log(mean) of

1943%--Continued

tree

Site  Pre/ St andar d Ad] ust F-
No. post N Log(a) b error of (b) RZ ratio Signif.
24 0 64 -1.81 2.46 0.158 0.79 242.0
1 42 -2.25 2.66 0.330 0.61 64.6
25 0 93 0.48 1.42 0.215 0.32 41.6
1 42 0.79 1.30 0.204 0.49 40.7
26 0 73 1.76  0.84 0.188 0.20 19.5
1 &2 0.84 1.23 0.375 0.19 10.8 %%
27 0 93 1.05 1.16 0. 350 0.10 11.1 %%
1 42 -0.23 1.83 0. 258 0.55 50.2
28 0 90 1.59 0.84 0.382 0. 04 4.9 *
1 42 -2.68 2.91 0.443 0.51 43.1
29 0 53 -0.41 1.85 0.109 0. 64 95.3
1 42 -2.21  3.04 0.147 0.91  425.0
34 0 83 1.24 1.10 0. 096 0.62 132.0
1 & -0.67 1.77 0.499 0.22 12.6 ek
36 0 93 -3.31  3.17 0.370 0.44 73.4
1 42 -4.67 3.95 0.181 0.92  477.0
37 0 92 -1.68 0.79 0.139 0.25 32.1
Tennessee Valley Authority Plots
1 42 1.19 2.22 0. 253 0.65 76.5
46 0 93 0.09 1.79 0.110 0.74  267.0
1 42 1.64 2.48 0.339 0.56 53.3
54 0 93 0.66 1.94 0.471 0.15 16.9
1 42 2.66 2.80 0.511 0.42 30.1
55 0 43 2.37 2.71 0.270 0.70  101.0
1 42 4.09 3.57 0.572 0.48 38.9
132 0 48 1.08 1.25 0.216 0.36 27.4
1 42 0.57 1.85 0. 454 0.28 16.7 k%
153 0 59 2.28 0.49 0.231 0. 06 4.4 %
1 42 1.32 1.14 0. 286 0.27 15.9  www
158 0 45 1.48 0.93 0.108 0.62 74.0
1 42 2.95 2.89 0.370 0.59 60.9
National Park Service Plots
301 0 42 -1.50 2.57 0.421 0. 47 37.2
1 &2 -1.96 2.86 0.152 0.90 353.0
302 0 42 -2.77  2.86 0. 404 0.54 50.1
1 42 -1.46 2.40 0.193 0.79 153.0
303 0 42 -1.40  2.44 0.236 0.72 108.0
1 42 -1.50 2.59 0.211 0.78 150.0
304 0 42 -0.92 2.1 0.439 0.35 23.1
1 42 2.58 0.51 0.261 0.07 3.9 «x
305 0 42 -0.78  2.04 0.239 0. 64 73.0
1 42 0.29 1.49 0.159 0.68 87.2
307 0 42 -1.73  2.61 0.109 0.93 571.0
1 42 0.27 1.65 0.194 0.63 72.3
308 0 42 -1.79  2.58 0. 441 0.45 31.2
1 42 -2.49  3.06 0. 504 0.47 36.9
309 0 42 -3.51  3.34 0.558 0.46 35.8
1 42 -1.19  3.31 0.272 0.63 72.1
310 0 42 -0.41  1.92 0.158 0.78 148.0
1 42 -2.02  2.77 0.372 0.57 55.5
311 0 42 -2.43 2,70 0.224 0.78 145.0
1 42 -0.18  1.83 0.166 0.75 122.0
312 0 42 2.40 0.59 0.261 0.09 5.1 ¢
1 & 1.63 0.84 0.237 0.22 12.5 **
313 0 41 -3.64 3.16 0.448 0.53 49.7
1 42 5.19 0.63 0.585 0 1.2 N/s
314 0 4 0.30 1.46 0.333 0.31 19.1
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Tabl e 2.--Regression analyses of the log(variance) against

ring increments before and after

log(mean) of tree

1943 - -Continued

Site Pre/ St andard Adj ust  F-
No. post N Log(a) b error of (b) R2  ratio S gnif.
National Parks Service Plots
1 42 2.35 0.57 0.357 0.04 2.6 N/S
315 0 42 -4.42 3.34 0.341 0.72 108.0
1 42 114 2,22 0. 207 0.74 115.0
316 O 42 4,28 0.51 0.673 0 0.6 N/s
1 42 0.95 1.14 0.249 0.33 21.1
317 O 42 -0.18 1.73 0.225 0.59 59.5
1 42 -0.39  1.87 0.281 0.52 44. 6
318 O 42 -0.60 1.98 0.330 0. 46 35.8
1 42 -0.09  1.90 0.209 0.67 33.1
319 0 42 -2.14  2.69 0. 265 0.71  103.0
1 42 -2.99  2.99 0. 380 0. 60 62.1
320 O 42 -1.62  2.61 0.181 0.83  208.0
1 42 0.86 1.40 0.183 0.59 59.1
321 O 42 -0.95 2.17 0.173 0.79 158.0
1 42 0.12 1.60 0.191 0.63 70.1

T *allregressions are significant at P <0.0001, except Where indicated:

N/S = not significant, % =
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Red Spruce Tree Ring Analysis Using a Kalman Filter

Paul

SUMMARY

A Kalman filter was applied to red spruce
(Picea rubens Sarg.) tree ring data collected
from the Geat Snoky Muntains by the Tennessee
Valley Authority and the National Park Service.
A new standardization method was developed that
can be justified with a nodel-based assunption.
The ~variance of the standardized growh
chronol ogy appears to have i ncreased in recent
years. The sensitivity of red spruce to climate
began to increase in the 1late 1960's and |eveled
off in the early 1980's. It 1is possible that
increasing climatic sensitivity and variance are
related to bal sam wooly adelgid activity in these
stands.

INTRODUGTION

Tree ring data provide one of the few
historical records for scientists to assess the
impact of atnospheric deposition influences on
forests (ADF). However, to adequately assess
this impact, historical i nfornation on weat her
and pollution levels are also needed. Al t hough
past weather records are available from weather
stations, deposition levels can only be inferred
from proxy variables such as coal consunption of
nearby power plants. M analysis will be linited
to exanmining the trends in the tree ring series
and attenpting to explain these trends with
average nonthly tenperature and total
precipitation records. The Kalman filter is
shown to be a useful tool for this type of
anal ysi s.

DATA

The National Park Service (NPS) and the
Tennessee Valley Authority (TVA) had col |l ected
data from plots located in the Geat Smoky
Mount ai ns. Spatial  relationships, current
diameter, and species Were recorded for each tree
on each plot. A few dominant trees were selected
at each NPS plot from which two increment cores
were taken, but pith date was not recorded; tree
rings were dated back to 1900. Dominant trees on
TVA plots were not cored, but pith date was
recorded; unfortunately tree ring wdths were
only available back to 1850. Information from
approximately 200 red spruce trees were available
in both data sets. A data set froma site on
Cingman's Dome (North Carolina) consisting of 38
cores on 19 trees was also utilized in this
study. Ed Cook of the Lanont-Doherty Tree Ring
Laboratory collected and cross-dated this data
set. The TvA and NPS tree ring data were
processed at Cak Ridge National Laboratories.

Generally, only data that would be conunonly
available in a dendrochronological study were
used; these data included ring width, elevation,

Paul Van Deusen is a mthematical statistician wth
Experiment Station, Forest Service-USDA, New Ol eans,

C. Van Deusen

pith date, and regional weather data. Nat i onal
Weather  Service Climatic Division data from
stations in the northern nmountains of North
Carolina were summarized to provide total
rainfall and average tenperature by nonth
beginning in 1931

STANDARDIZATION

A basic goal of many tree ring studies is to
produce a common chronology from a group of trees
to be representative of a site. It is probable
that this chronology wll denonstrate a common
signal to which all trees 4in the area have
responded. In order to anplify the common
signal, an attenpt is nmade to elininate
individual tree signals that are unrelated to the
common signal.  The age-related biological growh
signal can be renoved by a nunmber of procedures
categorically referred to as standardization.
Gaybill (1982) presents nethods where a growh
model is individually fit to each tree ring
series.

Gaybill (1982) presents a hypothetical
breakdown of the raw ring width for a single tree
at time t, R(t), as follows:

R(t) = Ct + Bt + Dlt + D2t + et: (1)

where Cp is the macroclimtic signal common to
all trees;

By is the biological growh trend - a
function of tree age;

D1y is a disturbance signal that is unique
to the individual;

D2y is a disturbance signal common to0 mDSt
or all individuals--possibly caused by
fire, insects, or pollution; and

er accounts for random disturbance.

In order to maximze the macrosignals (C and
D2), it is necessary to recognize and remove the
mcrosignals (B'and D) as much as possible (Cook
1987). An index is forned as followes:

Index(t) = R(t)/Y(t), (2)

where Y(t) is the nodel-based prediction of R(t).
This produces a new index series with- an
expectation of 1, a nmore honpgeneous variance,
and a smaller first order autocorrelation than
the original series (Fritts 1976). G aybill
(1982) presents  negative  exponentials and
ort hogonal polynomials as potential prediction
model s.

Cook (1987) discusses the use of splines to
replace Gayhill's model s. There {s a
possibility that the disturbance signal (D1) as
wel | as the B-signal may be renoved with the
spline approach, and nore user interaction and
expert opinion are required. Warren (1980)

the Southern Forest

Loui siana 70113.
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presents an alternate model-based approach that
coul d also be used to remove the D1 signal, but
it also requires much user interaction.

A NEW STANDARDI ZATI ON PROCEDURE

A method was sought for this study that
required little subjectivity and could be wused to
automatically process many hundreds of cores.
The nethod begins With a standard signoidal nodel
for diameter at some age, D(A):

D(A) = b(l - e KAy (3)

where b is the asynptote paranmeter, and

k is the shape paraneter.

Differentiating nodel (3) with respect to age
gives a dianmeter growh nodel:

4DA) _ pexa (4)
= 2 R(A)

Model (4) is appropriate for radial increment
dat a and is simlar to standard
dendr ochronol ogi cal  net hods.

Assuning nodel (4), two steps are required to
remove the age-related trend from the data.
First take the natural log of model (4), giving:

log[R(A)] = constant -KA . (5)

Then take the first differences of nodel (5),
giving:

log(R(4)] + log [R(A-1)] = -k (6)
Alog{R(t)1 .

Thus a sinple transformation removes the age-
related trend from the tree ring series. Result
(6) can be justified intuitively by viewing it as
a relative growh rate. Taking the log of R(t)
puts it on a relative scale, and the first
difference {s just a numerical first derivative
that can be viewed as a growth rate. This
transformation can be quickly performed without
sophisticated software or wuser interaction, an
important advantage for large data sets.

Pl otting the data before and after
transformation indicated that the new series was
stationary and that the age-related trend had
been removed as expected (fig. 1). Figures 1 and
2 show how the transformati on creates siml ar
series from a young tree and an old tree that
| ooked quite different before transformation.
Notice that 1937, 1969, and 1981 are all low on
the transformed series.

The analysis can then proceed on the
transformed data by assuming that the new series
is composed Of the follow ng signals:

A og[R(t)] = C¢ + Dl¢ + D2¢ + eg, (N

where Cy, DIt, D2¢, and ey are defined as ir
model (1)

The age-related signal is now renoved. Two
macrosignal terns that are of interest remain (C
and D2), as well as two uninteresting mcrosignal
terms (D1 and e) that will be treated as noise.
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KAIMAN FILTER

A system for updating and predicting is
presented by Kalmar! (1960) based on a linear
dynani ¢ nodel . These nodels are generalizations
that can generate any of the class of ARMA nodel s
(Box and Jenkins  1976), standard mltiple
regression models, and regression nodels wth
time varying paranmeters (Harvey 1981). Appl i ed
to dendrochronol ogy, the Kalman filter provides a
means of sinultaneously reducing a nunmber of
series to a single chronol ogy and generating
cli mat e- based predi ctions. Furthernore, the
climate paraneters can be all owed to vary over
time to provide a test of the uniformtarian
principle that conditions in the past are simlar
to the present. The unifornitarian principle is
the fundanental justification for the use of
dendrochronology to infer past conditions.

The Kalman filter can be derived from Bayesian
theory (Harrison and Stevens 1976; Meinhold and
Singpurwal la 1983) or with least squares nethods
presented by Duncan and Horn (1972). The
equations needed to inplement the Kalman filter
are presented below, and the reader is referred
to the citations for the theoretical devel opnent.

The basic difference between the XKalman filter
and usual regression nodels is that the
paraneters are allowed to vary over tine. The
rel ationship between the vector of observed
standardized ring widths at time t (Y.) and the
parameters (ac) is called the observation or
measur ement  equation:

Y = Feae + vy,

where the matrix F. is fixed and of order nexp,
ar is a pxl vector of underlying state
paraneters, and v is an ntxl vector of residuals
with zero expectation and variance matrix Wt.

The state variable, at, evolves over tine
according to a first order Markov process as
defined by the transition or system equation:

ot = Geag.] + we |

where Gy is a fixed pxp matrix, and wt is a pxl
vector of residuals wth zero expectation and
yariance matrix We.

The error terns vy and wt are assuned to be
i ndependent white noise series. The quantities
that nust be known include the matrices (F. and
&) that premultiply the state variables (at and
ar.1). The matrices Fp and & correspond tO
i ndependent variables in regression theory, or,
when dealing with rocket trajectories, they come
frem wel | -defined physical | aws. The nore
coml ex problem comes from the need to know the
variance matrices (W, and V), because in many
statistical applications this will require some
user subjectivity.

The equations needed to estimate the state
variables can be divided into three parts:
prediction equations, updating equations, and
snoothing equations. Let ap.1 denote the optiml
estimator of ag.y based on all information up to
and including Yy . The covariance matrix of
at-1 - a.] Wil be Py_q. The prediction
equations for @ and the associated covariance
matrix given ap.1 and Py_q are:
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Figure 1.--Ring widths of a relatively young red spruce in raw (upper gr_aphg
and standardized (lower graph) form for a young tree. Firs
differences of the natural log were used to produce the |ower

standardi zed series.

ag/c-1 = Gpag.l , and (3a)
Pt/t_]_ = GtPt_]_Gt"" Wt . (3b)
V\hgn Yy becomes available, the updating
equations ~for the estimate of o and the
associ ated covariance matrix are:
ag = at/t-1 + Prye.1Fe'Z¢ }LE}. and (4a)
Pe = Pese-1 = Peye-1Fe' 2" "FePe/e-1 (4b)
where
Bt = Y¢ - Ftag/e-1, _
Zy = FePrseiFe’ + V¢, and, for conputational
savi ngs,
2ol = vl - v 1E{Ft'vt 1,
+ Pt/t-l Fe've!

The estimate of at in (4a) is the sumof its

estimate at time t-1 and a weighted average of
the prediction errors (E¢).

At any time, a. is an optimal estimate, given
all previous information, but only the estimte
at time T (the final period) contains all of the
information available. Gven all information,
the optimal solution for any time t 4ig referred
to as signal extraction or snoothing. Smoot hi ng
begins with the solutions at time T and
recursively goes backwards to tine 1. Thi's
yields the optimal snoothed estimates of the
state variables wth associated covariance
matrices as follows:

ar/T = a + Pc* L(3t+1/T - Gre18e), and  (Sa)

PejT = By + Po” (Pey1/T - Pt+1/t)1’t*' : (5b)
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Figure 2.--Ring widths of an older red spruce in raw (upper graph) and

standardi zed (| ower
differences of
standardi zed series.

wher e
ay/T = AT for the starting value on the
state variables,
BPyyr = PT for the covariance starting
val ues and

P = PeGeyy’ I’t+1/t'1

APPLYING THE KAIMAN FILTER IN DENDROCHRONOLOGY

The Kalman filter provides a conplete system
for prediction, updating, and snoothing that
should appeal to the dendrochronol ogist. In
particul ar, the usual procedure of c¢limate
prediction from a single chronology formed from
many sStandardized tree ring series could be
refined. Two applications of the Kalman filter
will be presented. The first shows how a
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graph)

the natural log were used to produce the

First
| ower

form for an old tree.

chronology can be formed sinultaneously with its
climate predictor, and the second is an
application to dendroclimatol ogy. For an
additional application, readers should see Jones
(1980) where various nodels are fit to drought
data reconstructed from tree rings.

Application 1

The Kalman filter was applied to the red spruce
data collected by the NPS and TVA  The objective
was to simltaneously form a single chronology
and its climte-based prediction. The data were
first standardized by taking the first difference
of the logarithns. The following Kalman filter
was then applied:




[+ 2
Cbservation equation Y, = Ftl:all A (6a)
2

Transition equation ejr = Ceap .1 + Vit (6b)
axe = a2,¢-1 + Wit (6¢)

wher e
Y is t he nexl vector
data at time t,
Fe is a matrix with two columns of length
n With the first column being 1’'s and
tﬁe second O's,
Ve, wig, and wo. are random errors,
C. is the climate variable, .
ay is the value of the chronology at tine
t, and
agy is the climate effect at tine t.

of observed tree ring

The covariance matrix ve was defined to be
ol (I, where o2 was estimated from vector Yt as
B(Yir -Ye¢)/I[ng-1}, and I was an identity matrix
of order ng. In other words, the trees were
treated a priori as independent. The covariance
matrix W was defined as

_1 0
W, = o?, [ M ‘1]
0 .0ln,

Thus the state variables were assumed to be a
priori independent. The elenments on the diagonal
were chosen to allow the state variables to vary
enough to respond to a trend, but not enough to
absorb random fluctuations. Since ajr Nigh
approximate the average of the vector Y., ng~
was chosen for the upper diagonal, and the factor
0.01 was wused in the lower diagonal to prevent
e from fluctuating in response to random
disturbances.  The results were robust to changes
in the Wand V matrices, which lends credence to
these val ues.

Data from NPS plots dates back to 1900. The
above algorithm was applied to the data from 1901
through 1983, because taking first differences
elimnates the first observation. The climate
data were available from 1931 through 1983, so
the filter was nodified during the "preclimte"

period (1901-30) by setting wor and C¢ to zero.

Results of Application 1

Climate | agged by 1 year was found to best
predict the chronology or time trend in the data.
The climate variable wused was a linear
conbination of all the nonthly rainfall and
tenperature data for a year, as described in
table 1.

Figure 3 presents the chronol ogies for the
three data sets. The NPS and dingnman's Done
chronol ogies were very similar, particularly over
the past 10 years. Variation in the standardized
series had a tendency to inecrease in the nore
recent years. This increase was nost evident in
the TVA chronology, but there was no suggestion
for the cause of increases.

The time trend predictions based on | agged
climate and the climate effect variable ag¢ With
95 percent confidence intervals are plotted in
figures 4, 5 and 6. Lagged climate predicted
the chronologies accurately beginning in the

Table 1 The

variable used was a i
monthly rainfall and
The wei ght

climate
conbi nation of
aver ages.

multiplied by
to create this combined climate variable.

conbi nati on.
rainfall

this linear
and Cctober

Sept enber

near
tenperature
bel ow js the value
the corresponding nonthly average
The
principle components Method was used tO create
tenperature
have the largest weights.

Variabl e Mont h Viei ght

0. 056
176
124
257
106
112
270
264
409
013
204
040

Tenperature

OzZz°onr»~~Zr>n<
Coooocoooo oo

Rai nfal | . 056
164
083

.039
161
199
061
026
027

.517
166

. 179

coocoocoooocooo

1960’s, but did poorly before this. The
corresponding plot of the parameter (the climate
effect) that multiplies climate also showed an
increase over tine. This indicated that the
trees were beconing nore responsive to climate in
the 1960's than they were previously. The reason
for the increased sensitivity to climate cannot
be determined from this study. One  might
speculate that this was caused by thinning in the
stands as a result of insect damage to the fir
component. Wether this is related to pollution
has not been determ ned.

Application 2

The Kalman filter can be applied to
sinmul taneous prediction of past climate and the
single common chronol ogy. This traditionally
invol ves averaging the individual series together
as a first step to form the single chronol ogy.
The climate prediction is then a separate Step
that takes place without the conplete information

contained in the original series.
A Kalman filter can be fornulated to handle
these steps sinultaneously. Thi S incorporates

the full information contained in the data while

automatically providing a prediction system for
past climate With associated prediction
intervals. Although the sinple solution given
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Figure 3,--Standardized chronol ogies from the Clingman’s Dome, National Park

Service, and Tennessee Valley Aut hority data sets. First
differences of the log transform were used to standardize each
tree ring series. A Kalman filter was used to produce 'the

chronology as described in equations (6a), (6b), and (6c).
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-Time trend predictions: A National Park Service chronol ogy
(solid line) and its climate based prediction (dashed line) using
the Kalman filter described by equations (6a), (6b), and (6c); B,
the trend in the climate paranmeter with 95 percent confidence
intervals, given in equation (6a). The climate variable is a
principle component (linear conbination) of nonthly average
rainfall and tenperature variables.
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the Kalman filter described by equations (6a), (6b), and (6c): B,
the trend in the climate paraneter given In equation 6a. The
climate variable is a principle component (linear combination) of
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bel ow does not achieve the potential of the

method, it was chosen to enphasize some inportant
points. Consider the followng fornulation:
Observation [Yt:l 3, 6T ["‘11;] l:vlt (7a)
. = _ +
equations C, 0 Y., J a,, Vo ] (7b)
Transition [alt =[O O:I [ %12 + Vit (7e)
equations Xt 0 14l a4 Yot (7d)
wher e
Yt is the ngxl vector of standardized ring
widths at time t,
C¢ is a qgxI vector of observed climate
vari abl es,
j¢ is a vector of 1's of length n,

O¢ is a vector of 0's of length n,
Ye
a1t

is the nean of the vector Y,

is the value of the chronology at
t,

arr is the climate parameter at time t, and
Vig, Vot, Wlg, Wor are random errors.

tim

Equations (7a) through (7d) define a system that
handles the dendroclimatol ogical problenms  of
formng a single chronology for a site providing
a means of predicting past climate, and testing
the uniformtarian principle.

Some details on inplenenting the above system
nmust be noted. The iterative process is started
at time T rather than tinme 1, since past climate
predictions are needed. Suppose that the c¢limate
variables are available from time T to time t*,
where 1 < t¥ < T, During this interval of known
climate (INT.) the paraneter ap is estimated.
Beyond INT., equation (7b) is elimnated and the
Kalman filter ig allowed to generate new val ues
of ay back to tinme 1 (the earliest time for which
tree data are available) and sinultaneously
produce the chronology and climate predictions as
aYetq- Furthernore, the trend can be exam ned
in t%e ap parameter over INT, to see if the
uni formtarian principle is valid, al t hough t he
Kalman filter will tend to move @ al ong the
established trend naking the uniformitarias

assunption less inportant.

Results of Application 2

Starting values nust be supplied to the system in
(7a) through (7d) for the parameter vector and
the wvariance matrices Vt and W; Wt was assunmed
diagonal with variances estimated from the
vectors Y. as in exanple 1. The |ast diagonal
el ement in Mt is the variance of vy and was
estimated from the variance in the known climate
data.  The matrix W, Was also assuned diagonal
and chosen sinmlarly to exanple 1.

A principle component of climate variables was
used for Ct. A starting value of zero was used
for the chronology paraneter al, and oy was
started at 10. Unfortunately, climate Was
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predicted poorly (fig. 7). The values before 1931
were predictions generated by the model.  Figyre
7 shows the climate paraneter ) trendi ng over
time with @ 95 percent confidence ! Nterval. The
par amet er was tending toward zero as the
confidence interval expanded, which is not
surprising given the poor predictions. Al t hough
the model presented jn equations (7a) through

(7d) may not be ideal, this demonstrates how one
could use the Kalman filter for predicting past
climate.

CONCLUSION

The focus of this paper was to apply the Kal man
filter to the study of tree rings. The Kalman
filter provides a natural way of handling many of
the problens that dendrochronol ogists encounter.

CLINGMAN’'S DOME DATA-PREDICTED

VS ACTUAL CLIMATE

Sr
al- A
3
N1
S v ;
FoRa B AN R i i
;'5,"\ HERN it ;Y \ 12 :
o MR H
1 Y RHR IR VN \
IR R AT Y
i TR AR N 1 1 | B T |
-2} " i | Y
H o H 1]
-3 ¥ ' 'i
f
-4 %
-5'-.
-5}
-7F
1900 05 10 (1] 20 55 50 55 40 45 50 55 60 65 70 75 60 85
CLINGMAN'S DOME CLIMATE PARAMETER TREND
l2r
8

b

55 40 45 50 55 60 65 70 75

YEAR

80

206 % 30

7. --Cclimate prediction: A prediction
(dashed line) of past climate obtained
from tree ring data using the Kalman
filter described by equations (7a)
through (7d). The solid line is known
climate, which jg available back to
1931; B, the c¢limate parameter trend
and 95 percent confidence interval.

Figure

This plot indicates that the
unifornitarian principle does not hold
here, since the parameter is tending

toward zero.
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The first application involved prediction of apn
average chronology Wwith climate incorporated in
the process. The paraneter associated with the
climate was allowed to vary over tine. The
climate parameter followed a sigmoid curve that
inplied an increasing sensitivity to climate with

tine. One might specul ate that insect-caused
thinning of the fir component accounts for this
phenomenon.

The second application gave gome insight as to
how the method can be applied to nore typical
dendrochronol ogi cal needs, i.e., predicting the
past value of climate from tree rings. It was
previously indicated in application 1 that the
data set enployed was insensitive t0 climate in
the past and thus predictions were poor.
Al t hough the filter was not extrenely
sophisticated, it showed how one m ght proceed
with such a problem Future nean tree ring
val ues were used t0 predict current climate while
sinul taneously developing the nean chronol ogy.
The trend jipn the c¢limate parameter could also be
inspected as an indication of the validity of the
unifornitarian principle.

LITERATURE CITED

Adans, H S.; Stephenson, S.L.; Blasing T.J.;
Duvi ck, D.N. 1985. Gowh-trend declines of
spruce and fir in m d-appal achi an subal pi ne
forests. Envi ronnent al and  Experimental

Botany. 25(4):315-325.

Box, G E P.; Jenkins, GM 1976. Tine series
anal ysi s: Forecasting and control. Holden-
Day, Inc. 575 p.

Cook, E. R 1987. The use and limtations of
dendrochronol ogy in studying the effects of air
pollution on forests. In:  Proceedings of the
NATO advanced research workshop: Effects of

acid deposition on
agricultural
Spri nger - Verl ag.
from the viewpoint
Association.  67(340): 815-821.
and climate.
Academic Press. )
Chronol ogy devel opnent
In: Climate from tree rings.,
P. M Kelly,

Lamarche Jr., Carrb'ridge University Press,

Baesi an Forecasting (wth discussion).
Soc B 38. 205-247.

A C 1981. Tine series nodels.
Philip Allan Publishers Limted.
and R B.
Document ati on growth decline.

Canadi an Jour nal

R H 1980.
ARMA nodels to tine
observati ons.

Maxi mum |iklihood fitting of

Technonetrics 23:
A new approach to linear

filtering and prediction problems. Trans.

A. R, Van Deusen, P.C. ;
met hodol ogi es used in the study of the effects
of atnospheric deposition on forests.
the National
NAPAP, Sout hern Forest
New Orleans,
Si ngpurwal la, N, D
Under st andi ng

Statistician 37:
W G 1980.
dendr ochr onol ogi cal
Bul I etin 40:

On renoving the growh trend



Van Deusen, Paul C., editor. 1988. Analyses of
Geat Snoky Muntain Red Spruce Tree Ring Data. Gen.

Tech. Rep.

SO-69. New Orleans, LA: US. Department of

Agriculture, Forest Service, Southern Forest Experinent

Station.

67 p.

Four different analyses of red spruce tree ring data
from the Geat Smoky Muntains are presented along with

a description of the spruce/fir ecosystem The

anal yses
anal ysis,
filter.

use several techniques including spatial
fractals, spline detrending, and the Kalman




