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ABSTRACT It is widely believed that population outbreaks of the southern pine beetle
(Dendroctonus frontalis Zimm.) are caused by vagaries of climate, such as periods of severe
drought. According to this view, D. frontalis population dynamics are dominated by density-
independent processes. We have statistically analyzed a 30-yr record of D. frontalis activity
in east Texas and have assessed the relative roles of density-independent and density-de-
pendent factors in beetle population fluctuations. Regressions of the rate of population change
on three climatic variables were not significant. By contrast, both time-series and regression
analyses provided strong and consistent evidence for delayed density regulation of D. frontalis
populations. Thus, in contrast to previous analyses, we conclude that D. frontalis outbreaks
are driven not by stochastic fluctuations of weather, but by some unknown population process
acting in a delayed density-dependent manner. This result provides a starting point for a
current study that will experimentally test various hypotheses concerning the role of natural

enemies in D. frontalis cycles.
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ALTHOUGH POPULATION OUTBREAKS of the south-
ern pine beetle (Dendroctonus frontalis Zimm.)
cause enormous economic damage, little is known
about the factors responsible for fluctuations in the
density of D. frontalis populations. It is generally
held that fluctuations in this beetle are driven by
variable climate (Wyman 1924; Craighead 1925;
Beal 1927, 1933; St. George 1930; King 1972; Kroll
& Reeves 1978; Kalkstein 1981; Michaels 1984).
Weather could affect beetles directly, e.g., when
extreme winter cold reduces survival (McClelland
& Hain 1979). Alternatively, weather could affect
beetles indirectly, by reducing host resistance to D.
frontalis attack. For example, severe water deficits
reduce oleoresin exudation pressure in pines (Vité
1961, Lorio & Hodges 1968), and lower the poten-
tial amount and duration of resin flow from wounds,
thus enhancing attack success of beetles (Lorio &
Hodges 1977).

In sum, according to the climate hypothesis, pop-
ulation dynamics of D. frontalis are dominated by
density-independent processes. An alternative hy-
pothesis is that there is a significant density-de-
pendent component in D. frontalis dynamics. For
example, beetle numbers might be following some
deterministic oscillatory trend caused by popula-
tion interactions with natural enemies or resources
(with stochastic fluctuations superimposed on this
trend). To distinguish between these two alterna-
tives, we applied time-series and regression anal-
yses to a record of temporal fluctuations of D. fron-
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talis numbers in east Texas and analyzed the effects
of three climatic variables on the per capita rate
of D. frontalis population increase.

Materials and Methods

The Data Set. Since 1958 the Texas Forest Ser-
vice has maintained records of D. frontalis spot
infestations observed in Texas in aerial surveys (a
spot infestation is defined as a group of 10 or more
adjacent pines that were killed by beetles). These
aerial surveys, which are conducted at 3-6 wk in-
tervals from May to October, cover some 11 million
acres in 38 east Texas counties. Only spots of 10 or
more trees are recorded, because smaller spots are
difficult to identify positively from the air. Re-
corded spots are separated into size classes: 10-25
trees, 2650 trees, 51-100 trees, and >100 trees.
For more details about aerial detection of D. fron-
talis spots see Billings & Ward (1984). Before 1973,
spots were recorded only for southeastern Texas.
Thereafter, records of spot infestations were kept
for each county. Thus, from 1973 to 1987 we have
data on the number of spots detected annually in
each east Texas county. Data on spots occurring on
National Forest land (600,000 acres) were not in-
cluded in the data base in most years, so we omitted
these spots from the analysis.

We used two indices of D. frontalis density. The
first was simply the number of spots detected (e.g.,
Billings & Pase 1979). This was used for the 30-yr
record of spots in southeastern Texas (Region 1 of
the Forest Survey of East Texas, Lang & Bertelson
1986). For the period 1973-1987, and for the whole
of east Texas, we have also estimated the number



v

402 ENVIRONMENTAL ENTOMOLOGY : :

Vol. 20, no. 2 s

of beetle-infested trees in each county in each year
by multiplying the number of spot infestations in
each size category by the median number of trees
in the category and summing the products. This
method produces more accurate estimates than the
first one, because the average size of spots may
fluctuate as beetle populations increase and decline.
The number of infested trees was then divided by
the area (in acres) occupied by pine and mixed
pine-hardwood forest in each county (Earles 1976,
Lang & Bertelson 1986) to obtain a relative esti-
mate of D. frontalis population density.

Statistical Analysis. The general model that un-
derlies all of our analyses relates D. frontalis den-
sity in year ¢, N,, to density during p previous years
and to a density-independent component ¢,

N, = f(Niiy Nees -, Niys €). ¢y

The parameter p gives the order of the process; ¢,
is assumed to be a normally distributed random
variable with mean zero and variance ¢*. Lagged
density-dependent effects (N,_,, ..., N,_,) are ex-
pected to arise as a result of interactions among
species in the community (Royama 1981, Murdoch
& Reeve 1987), or as a result of delayed density
effects on fecundity of the next generation (Prout
& McChesney 1985). Ecologists have long been
aware that delayed density dependence can affect
population growth and cause periodic population
oscillations (Hutchinson 1948, Moran 1953, Ber-
ryman 1978, Royama 1981).

The model (1) is too general to be used in the
analysis of the D. frontalis temporal records. It is
necessary to make the model more concrete by
adopting simplifying assumptions. We used two
distinct approaches. First, we employed the diag-
nostic techniques of time-series analysis (Box &
Jenkins 1976). Specifically, we estimated the au-
tocorrelation and partial autocorrelation functions
(ACF and PACF, respectively). Before the analysis,
beetle density in year ¢ was log-transformed, so
that L, = log N,. The autocorrelation function is
estimated by calculating the correlation coefficient
between all pairs of L,_, and L, separated by lag
r(r=1,2, ... yr). These correlation coefficients
are then plotted against the lag 7. If a population
undergoes periodic oscillations generated by biotic
interactions within the community, then its ACF
will also oscillate around zero with each successive
peak or trough decreasing in amplitude. In other
words, the ACF will behave as a damped sine wave
(Nisbet & Gurney 1982).

PACEF is an indicator of the number of terms,
p, that need to be included in model (1). Although
direct influences of past densities on the current
population change may be limited to a few lags,
indirect influences can persist much longer. Thus,
model (1) with p = 2 may have a significant au-
tocorrelation at lag 10. Constructing the PACF is
analogous to deciding on the number of indepen-
dent variables to include in a multiple regression
(Box & Jenkins 1976). For example, if p = 2 (that

is, N, is directly affected only by population den-
sities during the two previous years), then the PACF
will have significant spikes at the first two lags, and
will be statistically indistinguishable from zero at
higher lags. An application of the time-series anal-
ysis to 14 insect data sets can be found in Turchin
(1990).

The weakness of the Box~Jenkins approach, when
applied to population dynamiecs, is its implicit as-
sumption that the logarithm of the present popu-
lation density, L, = log N,, is related to the loga-
rithms of past densities in a linear fashion. For
example, if there are no delayed effects of the
stochastic environmental factors, then L, is assumed
to be generated by an autoregressive process of
order p (Box & Jenkins 1976):

Li=a,+al,_, +...+alL,,+e (2

Population dynamics, however, are inherently non-
linear, and a model such as (2) can at best be an
approximation of dynamics near an equilibrium
(Royama 1981). Thus, inspection of ACF and PACF
patterns is useful for detection of multiple lags, but
not for modeling population fluctuations, especially
if the dynamic behavior of the studied system is
deterministically unstable (limit cycles or aperiodic
chaos).

Our second approach involved specifying a non-
linear model for N, and considering a limited num-
ber of lags. We used the following model, which
is an extension of Ricker’s equation (Turchin 1990):

N, =N, exp{r, + yN,_, + ayN, ; + €] (3)

The parameters r, (intrinsic rate of population in-
crease), and «, and «, (which measure the effects
of direct and delayed density-regulation factors,
respectively) are readily estimated by regressing
the realized per-capita rate of population change
r, = log(N,/N,_;)on N,_, and N,_,. This procedure
assumes that errors are multiplicative and distrib-
uted log-normally, which is a standard assumption
in statistical analyses of population fluctuations
{Royama 1981, Pollard et al. 1987). We employed
stepwise regression to determine the significance
of the delayed density-dependence term: first re-
gressing r on N,_, and then testing to determine
whether adding the term N,_, significantly reduces
unexplained variance.

Climatic Effects. A major danger in any analysis
of climatic effects is overfitting, that is, regressing
a data set with a limited number of degrees of
freedom on too many variables (Linhart & Zuc-
chini 1986). Accordingly, before conducting the
analysis we selected three weather variables that
we thought were the most likely to influence beetle
population change:

(1) Heating degree-days accumulated during De-
cember through February. This number was
taken from the monthly summaries of east Tex-
as climatological data published by National
Oceanic and Atmospheric Administration
(NOAA, data obtained from the National Cli-
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Fig. 1. The total number of spot infestations de-
tected in southeastern Texas, 1958-1987.
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matic Data Center, Asheville, N.C.). A heating
degree-day is accumulated for each whole de-
gree that the daily mean temperature is below
65°F.

(2) The number of days above 90°F during the
months of June through August, also taken from
NOAA monthly summaries. We were unable
to use cooling degree-days because NOAA did
not begin reporting them until 1980.

(8) Cumulative annual water balance deficits.
NOAA data were used to calculate Thorn-
thwaite monthly potential evapotranspiration
for each of the years 1973-1987 (Thornthwaite
& Mather 1957). Deficits of monthly rainfall
to meet PE were then determined for each
month and totaled for each year.

The effect of these variables on the rate of pop-
ulation change, r, was analyzed by linear regres-
sions. Because temperature and, especially, amount
of rainfall vary widely over large geographic areas
such as east Texas, we selected one county for this
analysis, Hardin County. This county was selected
because it is located in the center of the area af-
fected by beetle outbreaks, and because the results
obtained would be directly comparable with those
obtained by Kalkstein (1981), who had also studied
beetle fluctuations in Hardin County. The rainfall
data was collected at Warren weather station, while
temperature data was taken from Town Bluff Dam
data (both stations are located in Tyler County, to
the north of Hardin County).

Results

Time-Series Analysis. Between 1958 and 1987
the D. frontalis population in southeastern Texas
went through four cycles (Fig. 1). The time-series
analysis provided strong evidence of delayed den-
sity-dependent regulation of beetle populations.
(Identical results were obtained with both number
of spots and number of infested trees as alternative
dependent variables, so only results for number of
spots are given.) PACF graph (Fig. 2) is the most
useful diagnostic tool for determining the order of
an autoregressive process (Box & Jenkins 1976).
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Table 1. Regression analysis of per-capita rate of in-
crease, r, on the climate variables. NS, P > 0.05

Mean
4 2
Variable df square F R’
Heating degree-days 1,12 12.749 2.81 NS 0.19
Days above 90°F 1,12 2.744 051INS  0.04

Water deficit, cm 1,12 1.699 0.13 NS 0.02

The theoretical PACF of the first-order autore-
gressive process is characterized by a single spike
atlag 1, and is zero everywhere else (Box & Jenkins
1976). The PACF of the time series, however, has
two spikes (at lags 1 and 2) that are significantly
different from zero. Such a pattern is consistent
with the theoretical PACF of the second-order au-
toregressive process (Box & Jenkins 1976). Note
that PACF at lag 2 is negative. The presence in
the model (2) of a negative term containing N,_,
implies delayed density regulation. The ACF of
the time series (Fig. 2) behaved as a damped sine
wave, which suggests that there is an oscillatory
deterministic component in beetle population dy-
namics (Nisbet & Gurney 1982).

Regression Analysis. The conclusion that D.

Jfrontalis populations in Texas are regulated by a

delayed density-dependent mechanism was rein-
forced by results of the regression analysis. There
was a highly significant regression of r, on N,_,
(F\5 = 31.79, P < 0.001, R? = 0.550). However,
this analysis did not detect any evidence of direct
(nonlagged) density dependence (F,,, = 4.06, P >
0.05, R? = 0.135). While surprising, the absence of
direct density-dependence is not inconsistent with
the occurrence of a significant PACF spike at lag
1 (see above), because the regression analysis was
performed on the realized per-capita rate of pop-
ulation change r, whereas time-series analysis ex-
amined lag correlations between N,’s. If we accept
that r, is a function of N,_, only, then

r, =1, + a,N, ,
and
N, = N,_,exp r, = N,_,exp[r, + a,N,_,]

In other words, N, is a function of both N,_, and
N,_,, and there should be significant PACF spikes
at both lags 1 and 2.

Influence of Climate. Visual comparison of time-
series plots reveals no consistent patterns in the
association between climate variables and beetle
numbers (Fig. 3). Furthermore, regression analysis
detected no significant effects of variation in cli-
mate on beetle population change (Table 1). Fi-
nally, including climatic variables in the analysis
in a stepwise fashion after accounting for the effect
of N,_, yielded no significant results.

Discussion

Our results contradict the hypothesis that D.
frontalis population outbreaks in east Texas are
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Fig. 2. The estimated autocorrelation and partial autocorrelation functions plotted against the time lag. The
dashed lines indicate bounds within which PACF is not different from O (at 0.05 confidence level).

2000
1400 |
1200 } E- 1800
A §
n 1000 |
2 8 1800
2 goot . 0
Q
m L~
A, 600t E 1400 }
7]
400 + J 45
/ o 1200 |
200 § o
0 2 " " i - & - 4./, " i .\. 1000 2 " a L i i " A L A i A i J
73 74 76 76 7T 78 79 B0 81 B2 83 B4 B5 BE 87 73 74 75 76 77 78 T9 60 81 82 83 B4 B85 86 B7
Time . Time
20 100 ¢
o
/ B o} D
o 16} AN =
et o
9 °
- 80 |
3 > N
10} . 2 /
8 Vv S 0t
o
: :
6} "
/ 60 'A
o e e A n A e i A e i n 2 A J 50 A, rl A A A 1 e A A A A A R
73 74 76 76 TT 76 79 80 Bi 82 83 B4 86 86 87 73 74 75 76 TT 7B 79 B8O 61 82 63 84 B5 86 67

Time Time .

Fig. 3. Time plots of (A) the number of beetle spots in Hardin County, (B) estimated water deficit, in cm, (C)
heating degree-days, and (D) the number of days during which maximum temperature exceeded 90°F.



April 1991

driven by changes in weather. We did not detect
any significant effects of climate variables on the
rate of population change. Furthermore, both time-
series and regression analyses implicated density-
dependent factors as principal causes of population
oscillations in D. frontalis.

There are several reasons why our conclusion is
at variance with conclusions of most previous anal-
yses of climate effects on beetle outbreaks. First,
overfitting is a major problem with many D. fron-
talis—climate analyses. Records of beetle activity
are typically short, and, consequently, degrees of
freedom available for regressions are limited. How-
ever, the number of climate variables that could
influence beetle numbers is large. For example,
amount of rainfall could have different effects at
different times of the year, and the time lag be-
tween a rainfall event and beetle population re-
sponse is unknown. Thus, using multiple variables
in the analyses increases the likelihood of “detect-
ing” a significant correlation by chance alone. King’s
(1972) comparison of mean monthly rainfalls for
epidemic versus nonepidemic years is an example
of this problem. Since King made comparisons for
each month separately and used 42 localities, the
total number of comparisons was 12 x 42 = 504
items. At a 0.05 significance level, one would expect
504 x 0.05 = 25 apparently significant items if
there were no relationship between climate and
beetle activity. King (1972) argues that the 32 ap-
parently significant items that he detected are sig-
nificantly more than the expected 25. Even if this
is correct (but see the next paragraph), the fact
remains that the majority of apparently significant
items are spurious, and we do not know which are
spurious and which are not. A similar problem
affects the study by Kroll & Reeves (1978), who
analyzed a data set consisting of 11 observations
by regressing it on 11 independent variables. The
danger of spurious correlations can be minimized
by severely restricting the set of weather variables
before the analysis (a priori). Alternatively, the
technique of principal component analysis can be
used to reduce the dimensionality of the parameter
space (Kalkstein 1981, Michaels 1984).

The second difficulty arises because the values
of the dependent variable (number of beetle spots)
are not statistically independent. As our time-series
analysis showed, successive numbers of beetle spots
in Texas are strongly positively correlated. Thus,
one of the basic assumptions of the analysis of vari-
ance is violated (Sokal and Rohlf 1981), and con-
sequently F values reported by Kroll & Reeves
(1978) and Kalkstein (1981), whose studies are also
based on the Texas data set, are incorrect. The
problem of serial correlations can be avoided by
analyzing not spot numbers, but the residuals from
fitting the time series with a second-order autore-
gressive process, or—even better—model (3).

Finally, most previous analyses have ignored bi-
ological features of D. frontalis population pro-
cesses. This could lead to unrealistic predictions
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about the future course of a beetle epidemic. In
one study, a model based on regression results pre-
dicted the following numbers of beetle spots in
Hardin County in 1979: 0 spots for June, 1,254 spots
for July, and O spots for August (Kalkstein 1981).
The peak number of spots observed in Hardin
County at the height of the most recent outbreak
(in 1985) was 836, and it took three years for beetle
populations to build up to this level (beginning with
three spots in 1982). Clearly, a predictive model
of D. frontalis activity must take beetle population
dynamics into account.

It is probably not surprising, given the pitfalls
associated with quantifying weather influences on
changes in insect numbers, that different authors
came to opposite conclusions about the effects of
climate on beetle populations. For example, King
(1972) concluded that higher than usual rainfall
during the months of January and February was
associated with beetle epidemics during the follow-
ing summer. Kroll & Reeves (1978), however, con-
cluded that high rainfall during the previous fall
and spring decreased beetle activity, while winter
rainfall had no effect. Kalkstein (1981) found that
moisture surpluses during November through Jan-
uary and May through June contributed to beetle
outbreaks, while moisture surpluses during Feb-
ruary and March reduced the probability of an
outbreak. The inconsistency between factors iden-
tified as causing outbreaks by previous authors has
been noted by Gagne et al. (1980), whose results
indicated no relationship between moisture con-
ditions and brood survival. They found that during
January and February of 1972, rainfall was 4 cm
below average, while during the same period of
1974, rainfall was 6.4 cm above average. However,
brood survival was virtually the same in these two
years, 17 and 16%, respectively. Thus, the conclu-
sion that these conflicting results of previous weath-
er analyses resulted from use of too many weather
variables, and the associated spurious significance,
seems almost inescapable to us.

1t is revealing that a recent study, which avoided
the pitfalls listed above, found that fluctuations in
weather exerted only a weak influence on change
in beetle numbers. Michaels (1984) analyzed effects
of weather on D. frontalis outbreak patterns in
Atlantic coastal and piedmont regions. His final
regression equation included 7 independent vari-
ables, but explained only 25% of variance in r (the
per capita rate of change). This result is typical;
climate commonly accounts for <30% of variation
in insect population numbers (Martinat 1987). By
contrast, a single variable, N,_,, explained 55% of
the variance in r in our analysis of Texas spot num-
bers.

To determine the temporal pattern of population
dynamics predicted by model (8), we have simu-
lated a 60-yr period of beetle fluctuations using
first the deterministic model only (Fig. 4A), and
then the deterministic model with stochastic vari-
ation (Fig. 4B). These simulations indicate that fac-
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tors acting in a delayed density-dependent manner
can produce periodic oscillations similar to those
observed in spot numbers. The deterministic pat-
tern of D. frontalis oscillations is quasiperiodic;
that is, D. frontalis numbers cycle with a period
that is an irrational number, so that the solution
never repeats itself exactly (at least, the computer
solution never repeated itself during 100,000 it-
erations).

Directions for Future Research. A large gap in
our understanding of D. frontalis dynamics con-
cerns the identity of the biological interactions re-
sponsible for delayed density-dependent regulation
and lag-induced population cycles revealed by the
analyses in this paper. Time-series analysis cannot
answer this question, relying as it does on obser-
vational rather than experimental data. The find-
ing of delayed density dependence does, however,
suggest various hypotheses regarding possible
mechanisms. Two of us (P.T. and A.T.) currently
are testing the hypothesis that delayed regulation
arises from an interaction with natural enemy pop-
ulations. According to this hypothesis, beetle out-
breaks occur when the mortality caused by pred-
ators and parasites decreases, or outbreaks collapse

- due to an increase in this mortality, or both. Our
approach consists of measuring the impact of nat-
ural enemies on the within-tree rate of D. frontalis
increase at periodic intervals (twice a year)
throughout a complete outbreak cycle. This impact
of natural enemies is measured by using cages to
exclude all beetle associates from a portion of a
tree, and then comparing the ratio of beetle in-
crease within the exclusion cages to that outside
the cages. The pattern of variation in natural en-
emy impact, in relation to the phase of D. frontalis
outbreak cycle, will allow us to determine the dy-
namical role of enemies in this cycle, as illustrated
in Fig. 5. The crucial question—essentially that of
traditional key-factor analyses—is to what extent
changes in enemy-induced mortality are correlated
with changes in beetle rates of population change,
r, (Fig. 5B). At one extreme, beetle outbreak dy-
namics might be entirely due to interactions with
natural enemies. In this case (Fig. 5C), the ratio of
increase inside the cages (protected from enemies)
is constant throughout an outbreak, with both the
increase in r, triggering an outbreak, and the decline
in r, causing outbreak collapse reflecting changes
in the action of natural enemies. At the other ex-
treme, we may find that the impact of enemies
does not change through the outbreak cycle (Fig.
5D). This would indicate that outbreaks are driven
by some factor which affects beetles inside as well
as outside cages, such as disease or host resistance.
Intermediate situations also are possible: enemies
may suppress outbreaks but not trigger them (Fig.
SE), or vice versa (Fig. 5F).

Another avenue for future investigation is sug-
gested by one feature of the data that the model
(3) did not capture: increased amplitude of beetle
oscillations with time (Fig. 1). Although the mean
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Fig. 4. Time plots of D. frontalis oscillations pre-

dicted by the model (3): (A) without stochastic compo-

nent, and (B) with stochastic component, ¢ = 0.4. The

parameters of the model (3) were estimated by regression

(estimate * SE): o, = 1.25 + 0.31, and a, = —0.0006 +
0.0001. , was assumed equal to 0.

number of beetle spots was approximately constant
from 1958 to 1987, the peaks of each successive
outbreak increased, while the troughs between out-
breaks descresed. The analysis of Turchin & Taylor
(1991) with a generalized version of the model (3)
suggested that the D. frontalis dynamical system
may be moving farther away from equilibrium as
time increases. Turchin & Taylor (1991) fitted their
model to the first and the second half of the time
series separately and found, respectively, diverging
oscillations and chaos. One possible explanation of
this pattern is a shift from immature understocked
stands to mature overstocked stands that occurred
in east Texas during the last several decades (Hed-
den 1978). For example, between 1955 and 1975
the area occupied by commercial forest (industry,
national forests, and private holdings) has de-
creased by 6%. At the same time, the total volume
of softwood sawtimber increased by 85% (Hedden
1978). This change represents an almost 2-fold in-
crease in density of resources available to beetles.
Thus, progressively more extreme oscillations of
beetle numbers could be a result of the enrichment
of their resource base (Rosenzweig 1971). An ex-
perimental test of this hypothesis is clearly needed.

Although our results indicated that a periodic
oscillation in D. frontalis was caused by density-
dependent population factors, and that three cli-
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the changes in overall rate of population change in (B) are entfrely due to changes in within-tree ratios of increase.
(C) A pure predator-prey cycle: r, within cages is constant, so that all changes in r, outside the cages are attributable
to natural enemies. (D) The null hypothesis: some factor affecting beetles inside as well as outside cages is responsible
for the cycle, while the impact of enemies remains constant (trends inside and outside cages are parallel). (E)
Enemies suppress outbreaks, but do not trigger them. r, outside cages begins to decrease in 1990 while r, inside
cages remains high. Some unknown other factor then leads to further decline in r, both inside and outside cages,
even after the impact of enemies returns to low levels in 1996. The next outbreak then is caused by a change in
this other factor, from 1996 to 1997, without any change in enemy impact. (F) Enemies trigger outbreaks, but do
ot suppress them. This is the opposite of (E). The decline in r, from 1990 to 1994, which causes collapse of the
outbreak, occurs both inside and outside cages: there is no change in enemy impact. The impact of enemies
eventually does increase (perhaps due to a delayed numerical response by predators), so that r, outside cages remains
negative in 1995 and 1996 despite a reduced effect of the unknown factor which suppressed the outbreak. The
next outbreak then is caused by a reduction in the impact of enemies.
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matic variables chosen a priori were incapable of
explaining this oscillation, we do not wish to imply
that climate has no effect on beetle population dy-
namics. Weather could advance or delay the onset
of a beetle outbreak, as well as affect the outbreak
amplitude. For the reasons stated earlier, however,
we do not think that statistical analyses of obser-
vational data will be successful in establishing the
effects of various climatic components on beetle

dynamics. We advocate an approach that will ex-
perimentally test a set of clearly stated hypotheses.
An additional reason for an experimental approach
is that the relationship between some weather vari-
ables, such as rainfall, and the susceptibility of pine
hosts to beetle attack may be quite complex. Mod-
erately limited water supply reduces the use of
carbon in growth processes, while freeing carbon
for synthesis of pine oleoresins (Lorio & Hodges
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1985, Lorio 1986). Thus, although extreme water
stress will be detrimental to the defensive ability
of pines against bark beetles, moderate water stress
may enhance host defenses due to increased oleo-
resin synthesis. Currently one of us (P.L., in col-
laboration with J. Dunn) is conducting an experi-
mental study to test this hypothesis. This study will
compare two groups of experimental trees: pines
in which moderate water stress was induced by
sheltering their root systems from rainfall, and pines
under near-optimal water conditions (for which
rainfall is supplemented by irrigation if necessary).
Defensive ability of pines in each treatment will
be assessed by inducing beetle attack, and mea-
suring the ratio of unsuccessful to successful attacks
and the number of beetles killed per unit area of
bark. We hope that a research program combining
such experimental studies with population analysis
techniques developed in this paper will give us a
more complete picture of interrelations between
the abiotic and biotic factors affecting D. frontalis
population change.
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